首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
TB or not TB: calcium regulation in mycobacterial survival   总被引:1,自引:0,他引:1  
Trimble WS  Grinstein S 《Cell》2007,130(1):12-14
Mycobacterium tuberculosis (Mtb)-the bacterium that causes tuberculosis-resides in phagosomes inside macrophages. This bacterium evades destruction by preventing phagosome maturation, which involves the fusion of phagosomes with lysosomes. In this issue of Cell, Jayachandran et al. (2007) suggest that mycobacteria co-opt the actin-binding protein coronin 1 to activate the phosphatase calcineurin, thereby preventing phagosomal maturation.  相似文献   

2.
Many mycobacteria are intramacrophage pathogens that reside within nonacidified phagosomes that fuse with early endosomes but do not mature to phagolysosomes. The mechanism by which mycobacteria block this maturation process remains elusive. To gain insight into whether fusion with early endosomes is required for mycobacteria-mediated inhibition of phagosome maturation, we investigated how perturbing the GTPase cycles of Rab5 and Rab7, GTPases that regulate early and late endosome fusion, respectively, would affect phagosome maturation. Retroviral transduction of the constitutively activated forms of both GTPases into primary murine macrophages had no effect on Mycobacterium avium retention in an early endosomal compartment. Interestingly, expression of dominant negative Rab5, Rab5(S34N), but not dominant negative Rab7, resulted in a significant increase in colocalization of M. avium with markers of late endosomes/lysosomes and increased mycobacterial killing. This colocalization was specific to mycobacteria since Rab5(S34N) expressing cells showed diminished trafficking of endocytic tracers to lysosomes. We further demonstrated that maturation of M. avium phagosomes was halted in Rab5(S34N) expressing macrophages supplemented with exogenous iron. These findings suggest that fusion with early endosomes is required for mycobacterial retention in early phagosomal compartments and that an inadequate supply of iron is one factor in mycobacteria's inability to prevent the normal maturation process in Rab5(S34N)-expressing macrophages.  相似文献   

3.
Pathogenic mycobacteria such as Mycobacterium tuberculosis and Mycobacterium avium facilitate disease by surviving intracellularly within a potentially hostile environment: the macrophage phagosome. They inhibit phagosome maturation processes, including fusion with lysosomes, acidification and, as shown here, membrane actin assembly. An in vitro assay developed for latex bead phagosomes (LBPs) provided insights into membrane signalling events that regulate phagosome actin assembly, a process linked to membrane fusion. Different lipids were found to stimulate or inhibit actin assembly by LBPs and mycobacterial phagosomes in vitro. In addition, selected lipids activated actin assembly and phagosome maturation in infected macrophages, resulting in a significant killing of M. tuberculosis and M. avium. In contrast, the polyunsaturated sigma-3 lipids behaved differently and stimulated pathogen growth. Thus, lipids can be involved in both stimulatory and inhibitory signalling networks in the phagosomal membrane.  相似文献   

4.
Pathogenic mycobacteria survive within macrophages by precluding the fusion of phagosomes with late endosomes or lysosomes. Because the molecular determinants of normal phagolysosome formation are poorly understood, the sites targeted by mycobacteria remain unidentified. We found that Hrs, an adaptor molecule involved in protein sorting, associates with phagosomes prior to their fusion with late endosomes or lysosomes. Recruitment of Hrs required the interaction of its FYVE domain with phagosomal phosphatidylinositol 3-phosphate, but two other attachment sites were additionally involved. Depletion of Hrs by use of small interfering RNA impaired phagosomal maturation, preventing the acquisition of lysobisphosphatidic acid and reducing luminal acidification. As a result, the maturation of phagosomes formed in Hrs-depleted cells was arrested at an early stage, characterized by the acquisition and retention of sorting endosomal markers. This phenotype is strikingly similar to that reported to occur in phagosomes of cells infected by mycobacteria. We therefore tested whether Hrs is recruited to phagosomes containing mycobacteria. Hrs associated readily with phagosomes containing inert particles but poorly with mycobacterial phagosomes. Moreover, Hrs was found more frequently in phagosomes containing avirulent Mycobacterium smegmatis than in phagosomes with the more virulent Mycobacterium marinum. These findings suggest that the inability to recruit Hrs contributes to the arrest of phagosomal maturation induced by pathogenic mycobacteria.  相似文献   

5.
Phagosomal biogenesis is a fundamental biological process of particular significance for the function of phagocytic and antigen-presenting cells. The precise mechanisms governing maturation of phagosomes into phagolysosomes are not completely understood. Here, we applied the property of pathogenic mycobacteria to cause phagosome maturation arrest in infected macrophages as a tool to dissect critical steps in phagosomal biogenesis. We report the requirement for 3-phosphoinositides and acquisition of Rab5 effector early endosome autoantigen (EEA1) as essential molecular events necessary for phagosomal maturation. Unlike the model phagosomes containing latex beads, which transiently recruited EEA1, mycobacterial phagosomes excluded this regulator of vesicular trafficking that controls membrane tethering and fusion processes within the endosomal pathway and is recruited to endosomal membranes via binding to phosphatidylinositol 3-phosphate (PtdIns[3]P). Inhibitors of phosphatidylinositol 3'(OH)-kinase (PI-3K) activity diminished EEA1 recruitment to newly formed latex bead phagosomes and blocked phagosomal acquisition of late endocytic properties, indicating that generation of PtdIns(3)P plays a role in phagosomal maturation. Microinjection into macrophages of antibodies against EEA1 and the PI-3K hVPS34 reduced acquisition of late endocytic markers by latex bead phagosomes, demonstrating an essential role of these Rab5 effectors in phagosomal biogenesis. The mechanism of EEA1 exclusion from mycobacterial phagosomes was investigated using mycobacterial products. Coating of latex beads with the major mycobacterial cell envelope glycosylated phosphatidylinositol lipoarabinomannan isolated from the virulent Mycobacterium tuberculosis H37Rv, inhibited recruitment of EEA1 to latex bead phagosomes, and diminished their maturation. These findings define the generation of phosphatidylinositol 3-phosphate and EEA1 recruitment as: (a) important regulatory events in phagosomal maturation and (b) critical molecular targets affected by M. tuberculosis. This study also identifies mycobacterial phosphoinositides as products with specialized toxic properties, interfering with discrete trafficking stages in phagosomal maturation.  相似文献   

6.
Mycobacterium tuberculosis (M. tb) is an intracellular pathogen that can replicate within infected macrophages. The ability of M. tb to arrest phagosome maturation is believed to facilitate its intracellular multiplication. Rab GTPases regulate membrane trafficking, but details of how Rab GTPases regulate phagosome maturation and how M. tb modulates their localization during inhibiting phagolysosome biogenesis remain elusive. We compared the localization of 42 distinct Rab GTPases to phagosomes containing either Staphylococcus aureus or M. tb. The phagosomes containing S. aureus were associated with 22 Rab GTPases, but only 5 of these showed similar localization kinetics as the phagosomes containing M. tb. The Rab GTPases responsible for phagosome maturation, phagosomal acidification and recruitment of cathepsin D were examined in macrophages expressing the dominant-negative form of each Rab GTPase. LysoTracker staining and immunofluorescence microscopy revealed that Rab7, Rab20 and Rab39 regulated phagosomal acidification and Rab7, Rab20, Rab22b, Rab32, Rab34, Rab38 and Rab43 controlled the recruitment of cathepsin D to the phagosome. These results suggest that phagosome maturation is achieved by a series of interactions between Rab GTPases and phagosomes and that differential recruitment of these Rab GTPases, except for Rab22b and Rab43, to M. tb-containing phagosomes is involved in arresting phagosome maturation and inhibiting phagolysosome biogenesis.  相似文献   

7.
Mycobacterium tuberculosis survives in the infected host by parasitizing macrophages in which the bacillus resides in a specialized phagosome sequestered from the phagolysosomal degradative pathway. Here we report a role of the stress-induced p38 mitogen-activated protein kinase (p38 MAPK) in the component of M. tuberculosis phagosome maturation arrest that has been linked previously to the reduced recruitment of the endosomal and phagosomal membrane-tethering molecule called early endosome autoantigen 1 (EEA1; Fratti, R. A., Backer, J. M., Gruenberg, J., Corvera, S., and Deretic, V. (2001) J. Cell Biol. 154, 631-644). A pharmacological inhibition of M. tuberculosis var. bovis Bacillus Calmette-Guérin-induced p38 MAPK activity caused a marked increase in EEA1 colocalization with mycobacterial phagosomes. Consistent with the increase in EEA1 association and its role in phagosomal maturation, the pharmacological block of p38 activity caused phagosomal acidification and enrichment of the late endocytic markers lysobisphosphatidic acid and CD63 (lysosomal integral membrane protein 1) on mycobacterial phagosomes. A negative regulatory role of p38 MAPK activation in phagosome maturation was further demonstrated by converse experiments with latex bead phagosomes. Artificial activation of p38 MAPK caused a decrease in EEA1 colocalization with model latex bead phagosomes, which normally acquire EEA1 and subsequently mature into the phagolysosome. These findings show that p38 MAPK activity contributes to the arrest of M. tuberculosis phagosome maturation and demonstrate a negative regulatory role of p38 in phagolysosome biogenesis.  相似文献   

8.
Pathogenic mycobacteria prevent maturation of the phagosomes in which they reside inside macrophages and this is thought to be a major strategy allowing them to survive and multiply within macrophages. The molecular basis for this inhibition is only now beginning to emerge with the molecular characterization of the phagosome membrane enclosing these pathogens. We have used here several electron microscopy approaches in combination with counts of bacterial viability to analyse how expression of Nramp1 at the phagosomal membrane may influence survival of Mycobacterium avium and affect its ability to modulate the fusogenic properties of the phagosome in which it resides. The experiments were carried out in bone marrow-derived macrophages from wild-type 129sv (Nramp1(G169)) mice and from isogenic 129sv carrying a null mutation at Nramp1 (Nramp(1-/-)) following infection with a virulent strain of M. avium. We show here that Nramp1 expression has a bacteriostatic effect and that abrogation of Nramp1 restores the bacteria's capacity to replicate within macrophages. The combined analyses of the acquisition of endocytic contents markers delivered to early endosomes and/or lysosomes either prior to or after phagocytic uptake showed that in Nramp1-positive macrophages, M. avium was unable to prevent phagosome maturation and fusion with lysosomes but that in Nramp1-negative macrophages this capacity was restored. Several hypotheses are proposed to explain how Nramp1 could affect survival of M. avium. We also propose how the present observations could relate to the model according to which mycobacteria can prevent phagosome maturation by establishing a tight interaction with constituents of the phagosome membrane. Furthermore, these results show the importance of the choice of macrophages used as a model to study intracellular survival strategies of pathogens.  相似文献   

9.
Phagosomes offer kinetically and morphologically tractable organelles to dissect the control of phagolysosome biogenesis by Rab GTPases. Model phagosomes harboring latex beads undergo a coordinated Rab5-Rab7 exchange, which is akin to the process of endosomal Rab conversion, the control mechanisms of which are unknown. In the process of blocking phagosomal maturation, the intracellular pathogen Mycobacterium tuberculosis prevents Rab7 acquisition, thus, providing a naturally occurring tool to study Rab conversion. We show that M. tuberculosis inhibition of Rab7 acquisition and arrest of phagosomal maturation depends on Rab22a. Four-dimensional microscopy revealed that phagosomes harboring live mycobacteria recruited and retained increasing amounts of Rab22a. Rab22a knockdown in macrophages via siRNA enhanced the maturation of phagosomes with live mycobacteria. Conversely, overexpression of the GTP-locked mutant Rab22aQ64L prevented maturation of phagosomes containing heat-killed mycobacteria, which normally progress into phagolysosomes. Moreover, Rab22a knockdown led to Rab7 acquisition by phagosomes harboring live mycobacteria. Our findings show that Rab22a defines the critical checkpoint for Rab7 conversion on phagosomes, allowing or disallowing organellar transition into a late endosomal compartment. M. tuberculosis parasitizes this process by actively recruiting and maintaining Rab22a on its phagosome, thus, preventing Rab7 acquisition and blocking phagolysosomal biogenesis.  相似文献   

10.
Mycobacterium tuberculosis successfully parasitizes macrophages by disrupting the maturation of its phagosome, creating an intracellular compartment with endosomal rather than lysosomal characteristics. We have recently demonstrated that live M. tuberculosis infect human macrophages in the absence of an increase in cytosolic Ca(2+) ([Ca(2+)](c)), which correlates with inhibition of phagosome-lysosome fusion and intracellular viability. In contrast, killed M. tuberculosis induces an elevation in [Ca(2+)](c) that is coupled to phagosome-lysosome fusion. We tested the hypothesis that defective activation of the Ca(2+)-dependent effector proteins calmodulin (CaM) and CaM-dependent protein kinase II (CaMKII) contributes to the intracellular pathogenesis of tuberculosis. Phagosomes containing live M. tuberculosis exhibited decreased levels of CaM and the activated form of CaMKII compared with phagosomes encompassing killed tubercle bacilli. Furthermore, ionophore-induced elevations in [Ca(2+)](c) resulted in recruitment of CaM and activation of CaMKII on phagosomes containing live M. tuberculosis. Specific inhibitors of CaM or CaMKII blocked Ca(2+) ionophore-induced phagosomal maturation and enhanced the bacilli's intracellular viability. These results demonstrate a novel role for CaM and CaMKII in the regulation of phagosome-lysosome fusion and suggest that defective activation of these Ca(2+)-activated signaling components contributes to the successful parasitism of human macrophages by M. tuberculosis.  相似文献   

11.
Phagocytic entry of mycobacteria into macrophages requires the presence of cholesterol in the plasma membrane. This suggests that pathogenic mycobacteria may require cholesterol for their subsequent intra-cellular survival in non-maturing phagosomes. Here we report on the effect of cholesterol depletion on pre-existing phagosomes in mouse bone marrow-derived macrophages infected with Mycobacterium avium. Cholesterol depletion with methyl-beta-cyclodextrin resulted in a loosening of the close apposition between the phagosome membrane and the mycobacterial surface, followed by fusion with lysosomes. The resulting phagolysosomes then autonomously executed autophagy, which did not involve the endoplasmic reticulum. After 5 h of depletion, intact mycobacteria had accumulated in large auto-phagolysosomes. Autophagy was specific for phagolysosomes that contained mycobacteria, as it did not involve latex bead-containing phagosomes in infected cells. Upon replenishment of cholesterol, mycobacteria became increasingly aligned to the lysosomal membrane, from where they were individually sequestered in phagosomes with an all-around closely apposed phagosome membrane and which no longer fused with lysosomes. These observations indicate that, cholesterol depletion (i) resulted in phagosome maturation and fusion with lysosomes and (ii) caused mycobacterium-containing phagolysosomes to autonomously undergo autophagy. Furthermore, (iii) mycobacteria were not killed in auto-phagolysosomes, and (iv) cholesterol replenishment enabled mycobacterium to rescue itself from autophagic phagolysosomes to again reside individually in phagosomes which no longer fused with lysosomes.  相似文献   

12.
Mycobacterium avium and Mycobacterium tuberculosis are human pathogens that infect and replicate within macrophages. Both organisms live in phagosomes that fail to fuse with lysosomes and have adapted their lifestyle to accommodate the changing environment within the endosomal system. Among the many environmental factors that could influence expression of bacterial genes are the concentrations of single elements within the phagosomes. We used a novel hard x-ray microprobe with suboptical spatial resolution to analyze characteristic x-ray fluorescence of 10 single elements inside phagosomes of macrophages infected with M. tuberculosis and M. avium or with avirulent M. smegmatis. The iron concentration decreased over time in phagosomes of macrophages infected with Mycobacterium smegmatis but increased in those infected with pathogenic mycobacteria. Autoradiography of infected macrophages incubated with (59)Fe-loaded transferrin demonstrated that the bacteria could acquire iron delivered via the endocytic route, confirming the results obtained in the x-ray microscopy. In addition, the concentrations of chlorine, calcium, potassium, manganese, copper, and zinc were shown to differ between the vacuole of pathogenic mycobacteria and M. smegmatis. Differences in the concentration of several elements between M. avium and M. tuberculosis vacuoles were also observed. Activation of macrophages with recombinant IFN-gamma or TNF-alpha before infection altered the concentrations of elements in the phagosome, which was not observed in cells activated following infection. Siderophore knockout M. tuberculosis vacuoles exhibited retarded acquisition of iron compared with phagosomes with wild-type M. tuberculosis. This is a unique approach to define the environmental conditions within the pathogen-containing compartment.  相似文献   

13.
Mycobacterium tuberculosis (M.tb) is a leading cause of global infectious mortality. The pathogenesis of tuberculosis involves inhibition of phagosome maturation, leading to survival of M.tb within human macrophages. A key determinant is M.tb-induced inhibition of macrophage sphingosine kinase (SK) activity, which normally induces Ca2+ signaling and phagosome maturation. Our objective was to determine the spatial localization of SK during phagocytosis and its inhibition by M.tb. Stimulation of SK activity by killed M.tb, live Staphylococcus aureus, or latex beads was associated with translocation of cytosolic SK1 to the phagosome membrane. In contrast, SK1 did not associate with phagosomes containing live M.tb. To characterize the mechanism of phagosomal translocation, live cell confocal microscopy was used to compare the localization of wild-type SK1, catalytically inactive SK1G82D, and a phosphorylation-defective mutant that does not undergo plasma membrane translocation (SK1S225A). The magnitude and kinetics of translocation of SK1G82D and SK1S225A to latex bead phagosomes were indistinguishable from those of wild-type SK1, indicating that novel determinants regulate the association of SK1 with nascent phagosomes. These data are consistent with a model in which M.tb inhibits both the activation and phagosomal translocation of SK1 to block the localized Ca2+ transients required for phagosome maturation.  相似文献   

14.
Interconversions of phosphoinositides play a pivotal role during phagocytosis and at the subsequent stages of phagosomal maturation into the phagolysosome. Several model systems have been used to study the role of phosphoinositides in phagosomal membrane remodelling. These include phagosomes formed by inanimate objects such as latex beads, or pathogenic bacteria, e.g. Mycobacterium tuberculosis. The latter category provides naturally occurring tools to dissect membrane trafficking processes governing phagolysosome biogenesis. M. tuberculosis persists in infected macrophages by blocking Rab conversion and affecting Rab effectors. One of the major Rab effectors involved in this process is the type III phosphatidylinositol 3-kinase hVPS34. The lipid kinase hVPS34 and its enzymatic product PtdIns3P are critical for the default pathway of phagosomal maturation into phagolysosomes. Mycobacteria block PtdIns3P production and thus arrest phagosomal maturation. PtdIns3P is also critical for the process of autophagy, recently recognized as an effector of innate immunity defenses. Induction of autophagy by pharmacological, physiological, or immunological means, overcomes mycobacterial phagosome maturation block in a PtdIns3P generation dependent manner and eliminates intracellular M. tuberculosis. PtdIns3P and PtdIns3P-dependent processes represent an important cellular nexus where fundamental trafficking processes, disease causing host-pathogen interactions, and innate and adaptive immunity defense mechanisms meet.  相似文献   

15.
Acid sphingomyelinase is required for efficient phago-lysosomal fusion   总被引:1,自引:0,他引:1  
The acid sphingomyelinase (ASMase) localizes to the lumen of endosomes, phagosomes and lysosomes as well as to the outer leaflet of the plasma membrane and hydrolyses sphingomyelin to ceramide and phosphorylcholine. Using the facultative intracellular bacterium Listeria monocytogenes , we show that maturation of phagosomes into phagolysosomes is severely impaired in macrophages genetically deficient for ASMase. Unlike in wild-type macrophages, phagosomes containing L. monocytogenes in ASMase−/− macrophages remained positive for the late phagosomal markers mannose-6-phosphate receptor (M6PR) and Rab7 for at least 2 h and, correspondingly, showed delayed acquisition of lysosomal markers like lysosome associated membrane protein 1 (Lamp1). The transfer of lysosomal fluid phase markers into phagosomes containing L. monocytogenes was severely impaired in ASMase−/− macrophages and decreased with increasing size of the cargo. Moreover, phagosomes containing L. monocytogenes from ASMase−/− cells acquired significantly less listeriocidal proteases cathepsin D, B and L. The results of this study suggest that ASMase is required for the proper fusion of late phagosomes with lysosomes, which is crucial for efficient transfer of lysosomal antibacterial hydrolases into phagosomes.  相似文献   

16.
The intracellular trafficking processes controlling phagosomal maturation remain to be fully delineated. Mycobacterium tuberculosis var. bovis BCG, an organism that causes phagosomal maturation arrest, has emerged as a tool for dissection of critical phagosome biogenesis events. In this work, we report that cellubrevin, a v-SNARE functioning in endosomal recycling and implicated in endosomal interactions with post-Golgi compartments, plays a role in phagosomal maturation and that it is altered on mycobacterial phagosomes. Both mycobacterial phagosomes, which undergo maturation arrest, and model phagosomes containing latex beads, which follow the normal pathway of maturation into phagolysosomes, acquired cellubrevin. However, the mycobacterial and model phagosomes differed, as a discrete proteolytic degradation of this SNARE was detected on mycobacterial phagosomes. The observed cellubrevin alteration on mycobacterial phagosomes was not a passive event secondary to a maturation arrest at another checkpoint of the phagosome maturation pathway, since pharmacological inhibitors of phagosomal/endosomal pathways blocking phagosomal maturation did not cause cellubrevin degradation on model phagosomes. Cellubrevin status on phagosomes had consequences on phagosomal membrane and lumenal content trafficking, involving plasma membrane marker recycling and delivery of lysosomal enzymes. These results suggest that cellubrevin plays a role in phagosomal maturation and that it is a target for modification by mycobacteria or by infection-induced processes in the host cell.  相似文献   

17.
Alveolar macrophages (AM) are the first professional phagocytes encountered by aerosols containing infections in the lungs, and their phagocytic capacity may be affected by these infections or environmental particles. The aim of this study was to evaluate the innate endocytic and phagocytic properties of human AM obtained from patients with pulmonary tuberculosis and to characterize the vacuoles in which Mycobacterium tuberculosis bacilli reside in vivo. AM were obtained by bronchoalveolar lavage from patients with suspected tuberculosis and from asymptomatic volunteers (controls). Clinical case definitions were based on mycobacterial culture of respiratory specimens and HIV serology. To assess phagocytosis, endocytosis, and acidification of the endosomal system, AM were cultured with IgG-coated polystyrene beads, dextran, and a pH-sensitive reporter (3-(2,4-dinitroanilino)-3-amino-N-methyldipropylamine) and were evaluated by light and immunoelectron microscopy. Cells from 89 patients and 10 controls were studied. We found no significant difference between the two groups in the ability of AM either to ingest beads and dextran or to deliver them to acidified lysosomes. In AM from patients with tuberculosis, the bacilli were located in vacuoles that failed to accumulate endocytosed material and were not acidified. We concluded that AM from patients with tuberculosis and HIV infections were competent to endocytose and phagocytose material and to deliver the material to functional, acidified lysosomes. M. tuberculosis residing in these AM arrests the progression of their phagosomes, which fail to fuse with acidified lysosomes. This confirms, for the first time in humans with tuberculosis and HIV, the conclusions from previous animal and in vitro studies.  相似文献   

18.
LAMP proteins are required for fusion of lysosomes with phagosomes   总被引:3,自引:0,他引:3       下载免费PDF全文
Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) are delivered to phagosomes during the maturation process. We used cells from LAMP-deficient mice to analyze the role of these proteins in phagosome maturation. Macrophages from LAMP-1- or LAMP-2-deficient mice displayed normal fusion of lysosomes with phagosomes. Because ablation of both the lamp-1 and lamp-2 genes yields an embryonic-lethal phenotype, we were unable to study macrophages from double knockouts. Instead, we reconstituted phagocytosis in murine embryonic fibroblasts (MEFs) by transfection of FcgammaIIA receptors. Phagosomes formed by FcgammaIIA-transfected MEFs obtained from LAMP-1- or LAMP-2- deficient mice acquired lysosomal markers. Remarkably, although FcgammaIIA-transfected MEFs from double-deficient mice ingested particles normally, phagosomal maturation was arrested. LAMP-1 and LAMP-2 double-deficient phagosomes acquired Rab5 and accumulated phosphatidylinositol 3-phosphate, but failed to recruit Rab7 and did not fuse with lysosomes. We attribute the deficiency to impaired organellar motility along microtubules. Time-lapse cinematography revealed that late endosomes/lysosomes as well as phagosomes lacking LAMP-1 and LAMP-2 had reduced ability to move toward the microtubule-organizing center, likely precluding their interaction with each other.  相似文献   

19.
Nascent phagosomes must undergo a series of fusion and fission reactions to acquire the microbicidal properties required for the innate immune response. Here we demonstrate that this maturation process involves the GTPase Rab7. Rab7 recruitment to phagosomes was found to precede and to be essential for their fusion with late endosomes and/or lysosomes. Active Rab7 on the phagosomal membrane associates with the effector protein RILP (Rab7-interacting lysosomal protein), which in turn bridges phagosomes with dynein-dynactin, a microtubule-associated motor complex. The motors not only displace phagosomes in the centripetal direction but, strikingly, promote the extension of phagosomal tubules toward late endocytic compartments. Fusion of tubules with these organelles was documented by fluorescence and electron microscopy. Tubule extension and fusion with late endosomes and/or lysosomes were prevented by expression of a truncated form of RILP lacking the dynein-dynactin-recruiting domain. We conclude that full maturation of phagosomes requires the retrograde emission of tubular extensions, which are generated by activation of Rab7, recruitment of RILP, and consequent association of phagosomes with microtubule-associated motors.  相似文献   

20.
Proteomics has been applied to study intracellular bacteria and phagocytic vacuoles in different host cell lines, especially macrophages (Mφs). For mycobacterial phagosomes, few studies have identified over several hundred proteins for systems assessment of the phagosome maturation and antigen presentation pathways. More importantly, there has been a scarcity in publication on proteomic characterization of mycobacterial phagosomes in dendritic cells (DCs). In this work, we report a global proteomic analysis of Mφ and DC phagosomes infected with a virulent, an attenuated, and a vaccine strain of mycobacteria. We used label-free quantitative proteomics and bioinformatics tools to decipher the regulation of phagosome maturation and antigen presentation pathways in Mφs and DCs. We found that the phagosomal antigen presentation pathways are repressed more in DCs than in Mφs. The results suggest that virulent mycobacteria might co-opt the host immune system to stimulate granuloma formation for persistence while minimizing the antimicrobial immune response to enhance mycobacterial survival. The studies on phagosomal proteomes have also shown promise in discovering new antigen presentation mechanisms that a professional antigen presentation cell might use to overcome the mycobacterial blockade of conventional antigen presentation pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号