首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pressure response of two eukaryotic protein synthesizing systems has been characterized. The rabbit reticulocyte system has been tested, both in vivo and in vitro, using endogenous polysomes and polyuridylic acid (poly U). In addition, the poly U-directed polyphenylalanine synthesizing system obtained from wheat germ was utilized. The effect of pressure on eukaryotic protein synthesis has been found to be basically similar to that observed in prokaryotic systems, although the response of the eukaryotic protein synthesizing system is somewhat more complex signifying a greater influence of overlapping reactions. Magnesium was found to affect eukaryotic systems in much the same way as has been reported for prokaryotic systems, i.e., increasing the Mg2+ concentration in a protein synthesizing system increases the barotolerance exhibited by that system. Under conditions of high Mg2+ concentration, however, extreme (up to 160%) stimulation of protein synthesis at lower pressure levels was observed in the eukaryotic systems. Such high stimulation is not apparent in prokaryotic systems. The poly U-directed wheat germ system exhibited the most barotolerant polypeptide synthesis ever seen in our laboratory. This extreme barotolerance was only slightly decreased when the system was tested at reduced concentrations of magnesium.  相似文献   

2.
    
Helenalin, a sesquiterpene lactone which reacts primarily with exposed sulfhydryl groups, was shown to be an effective inhibitor of protein synthesis in rabbit reticulocyte lysates. Optimal inhibition required a 30 min preincubation in the absence of any added thiol compound. β-Mercaptoethanol was more effective than reduced glutathione in protecting enzyme sulfhydryl groups from inactivation by helenalin. Using partially fractionated systems, it was possible to show that helenalin had no effect on the elongation reactions or on the formation of the ternary initiation complex. However, the conversion of the ternary complex to the 48 S initiation complex was strongly inhibited. In this assay, only the initiation factor(s) were sensitive to helenalin. Using an assay system which requires all the initiation factors for optimal activity it was possible to show that the 0–40% ammonium sulfate cut of intiation factors (containing eIF-3 and eIF-4B) was sensitive to helenalin, while the 40–50% ammonium sulfate cut (containing eIF-2 and eIF-5) was not. Both ammonium sulfate cuts were equally sensitive to inhibition by the sulfhydryl reagent N-ethylmaleimide. Three purified rabbit reticulocyte initiation factors were then tested in the same assay system. Only eIF-3 showed appreciable sensitivity to helenalin, while eIF-2, eIF-3 and eIF-4B were all sensitive to inactivation by N-ethylmaleimide. These data suggest that helenalin may possess a relatively high degree of specificity as a sulfhydryl reagent.  相似文献   

3.
The selenocysteine (Sec)-specific eukaryotic elongation factor (eEFSec) delivers the aminoacylated selenocysteine-tRNA (Sec-tRNASec) to the ribosome and suppresses UGA codons that are upstream of Sec insertion sequence (SECIS) elements bound by SECIS-binding protein 2 (SBP2). Multiple studies have highlighted the importance of SBP2 forming a complex with the SECIS element, but it is not clear how this regulates eEFSec during Sec incorporation. Compared with the canonical elongation factor eEF1A, eEFSec has a unique C-terminal extension called Domain IV. To understand the role of Domain IV in Sec incorporation, we examined a series of mutant proteins for all of the known molecular functions for eEFSec: GTP hydrolysis, Sec-tRNASec binding, and SBP2/SECIS binding. In addition, wild-type and mutant versions of eEFSec were analyzed for Sec incorporation activity in a novel eEFSec-dependent translation extract. We have found that Domain IV is essential for both tRNA and SBP2 binding as well as regulating GTPase activity. We propose a model where the SBP2/SECIS complex activates eEFSec by directing functional interactions between Domain IV and the ribosome to promote Sec-tRNASec binding and accommodation into the ribosomal A-site.  相似文献   

4.
Translational arrest peptides (APs) are short stretches of polypeptides that induce translational stalling when synthesized on a ribosome. Mechanical pulling forces acting on the nascent chain can weaken or even abolish stalling. APs can therefore be used as in vivo force sensors, making it possible to measure the forces that act on a nascent chain during translation with single-residue resolution. It is also possible to score the relative strengths of APs by subjecting them to a given pulling force and ranking them according to stalling efficiency. Using the latter approach, we now report an extensive mutagenesis scan of a strong mutant variant of the Mannheimia succiniciproducens SecM AP and identify mutations that further increase the stalling efficiency. Combining three such mutations, we designed an AP that withstands the strongest pulling force we are able to generate at present. We further show that diproline stretches in a nascent protein act as very strong APs when translation is carried out in the absence of elongation factor P. Our findings highlight critical residues in APs, show that certain amino acid sequences induce very strong translational arrest and provide a toolbox of APs of varying strengths that can be used for in vivo force measurements.  相似文献   

5.
Experiments were performed to examine the fate of transferrin receptors in reticulocytes as these cells mature in vivo to erythrocytes. Reticulocytosis, synchronized by administration of actinomycin D, was induced in adult rabbits. Simultaneous measurements were made of haematological parameters and the interaction between transferrin and reticulocytes while the cells matured in vivo to erythrocytes. As the reticulocytes matured there was a parallel decline in their ability to take up transferrin and transferrin iron. At the same time, there was a proportionate decrease in the density of receptors for transferrin on the reticulocyte surface. The affinity of the receptors for transferrin remained unaltered during the maturation process. It was concluded that the inability of erythrocytes to take up transferrin or its iron is due primarily to the loss of transferrin receptors from the maturing reticulocyte surface.  相似文献   

6.
Slowly cooled cells of Streptomyces aureofaciens contained mainly tight-couple ribosomes. Maximum rate of polyphenylalanine synthesis on ribosomes of S. aureofaciens was observed at 40°C, while cultures grew optimally at 28°C. Ribosomes of S. aureofaciens differed from those of E. coli in the amount of poly(U) required for maximum synthetic activity. The polyphenylalanine-synthesizing activity of E. coli ribosomes was about 3-times higher than that of S. aureofaciens ribosomes. The addition of protein S1 of E. coli or the homologous protein from S. aureofaciens had no stimulatory effect on the translation of poly(U). In order to localize alteration(s) of S. aureofaciens ribosomes in the elongation step of polypeptide synthesis we developed an in vitro system derived from purified elongation factors and ribosomal subunits. The enzymatic binding of Phe-tRNA to ribosomes of S. aureofaciens was significantly lower than the binding to ribosomes of E. coli. This alteration was mainly connected with the function of S. aureofaciens 50 S subunits. These subunits were not deficient in their ability to associate with 30 S subunits or with protein SL5 which is homologous to L7/L12 of E. coli.  相似文献   

7.
We studied the effect of phagocytosis of polystyrene latex beads on protein synthesis by pulmonary macrophages. To do this we determine the specific radioactivity of extracellular and intracellular free phenylalanine and of phenylalanine released from tRNA and used this information in calculating the rates of protein synthesis. Phagocytosis resulted in an increased rate of protein synthesis irrespective of which precursor specific radioactivity was used in the calculation. The rate of protein synthesis was increased per μg polyribosomal RNA; but there was no increase in the amount of polyribosomal RNA in phagocytizing macrophages. The increase in the rate of protein synthesis (1.4-fold) was almost identical to the increase (1.3-fold) in the rate of ribosome transit in phagocytizing compared to nonphagocytizing macrophages. The decreased ribosome transit time during phagocytosis occurred without a fall in the average molecular weight of macrophage proteins. We conclude that phagocytosis increases the rate of protein synthesis in attached pulmonary macrophages and that this increased rate of synthesis can be accounted for almost completely by an increased rate of polypeptide chain elongation and/or termination.  相似文献   

8.
Abnormal proteins synthesized in rabbit reticulocytes in response to (i) the lysine analogue aminoethylcysteine and (ii) puromycin, form high molecular weight aggregates prior to degradation. Inhibitors of ATP synthesis partially inhibit catabolism of the aminoethylcysteine-induced abnormal protein; degradation of puromycin peptides synthesized after incubation with 25 μg/ml puromycin was not inhibited. Catabolism of the analogue-induced high molecular weight aggregate of abnormal protein in cell-free extracts was markedly stimulated by ATP, whereas proteolysis of the aggregated puromycin-peptides was ATP-independent. The ability of the reticulocytes to degrade the puromycin-peptide aggregates was found to decrease with cellular maturity. It is suggested that the energy-dependency for proteolysis is in some way related to the chain length of the abnormal protein synthesized.  相似文献   

9.
Rat liver ribosomes, prepared 1–24 h after intraperitoneal cortisol injection, contain multiple phosphorylated S6 consisting of four distinct derivatives in addition to the original non-phosphorylated S6. 25 h following the hormone injection the extent of S6 phosphorylation, as judged by its electrophoretic pattern in two-dimensional gels, resembles that of untreated rats. Ribosomal subunits with gradually increased degree of S6 phosphorylation, isolated at different time intervals after cortisol injection, exhibit polyphenylalanine polymerization levels inversely proportional to the extent of S6 phosphorylation. In addition, they show an elevated misincorporation of leucine in a poly(U)-programmed in vitro system. The lower amount of polyphenylalanine synthesized by multiple phosphorylated ribosomes in vitro is likely due to an enhanced susceptibility of nascent polypeptide chains synthesized in the in vitro system to proteinases present in the pH 5 and S-100 fractions. Liver polysomes derived from cortisol-treated animals lose their highly phosphorylated derivatives when exposed to S-100 enzymes. The loss can be prevented by concomitant action of proteinase and RNAase inhibitors (phenylmethylsulfonyl fluoride and heparin) but not by an inhibitor of phosphatase (sodium fluoride). In the absence of RNAase and proteinase inhibitors only degradation of old 40 S subunits can be demonstrated. 25 h after the cortisol treatment degradation of liver ribosomes occurs simultaneously with S6 dephosphorylation and is preceded by polysomal breakdown.  相似文献   

10.
Methylation of various components of the translational machinery has been shown to globally affect protein synthesis. Little is currently known about the role of lysine methylation on elongation factors. Here we show that in Saccharomyces cerevisiae, the product of the EFM3/YJR129C gene is responsible for the trimethylation of lysine 509 on elongation factor 2. Deletion of EFM3 or of the previously described EFM2 increases sensitivity to antibiotics that target translation and decreases translational fidelity. Furthermore, the amino acid sequences of Efm3 and Efm2, as well as their respective methylation sites on EF2, are conserved in other eukaryotes. These results suggest the importance of lysine methylation modification of EF2 in fine tuning the translational apparatus.  相似文献   

11.
The age-related reduction in cell-free synthesis in the free-living nematode Turbatrix aceti is due to a defect in the ribosomes. Addition of young ribosomal wash or use of young medium does not improve the activity of old, run-off ribosomes in the presence of phenylalanine and poly(U). It appears that some of the old ribosomes are incapable of binding the EF-1-GTP-aminoacyl-tRNA complex. These ineffective ribosomes are present in the 80 S (monosomal) fraction. Old ribosomes obtained from polysomes appear to bind normally.  相似文献   

12.
An inhibitor of protein synthesis was activated under high oxygen partial pressure (pO2) in hemin-supplemented and glutathione disulfide-free lysates from rabbit reticulocytes. This inhibitor shared some common features with other translational inhibitors from rabbit reticulocytes; that is, hemin-controlled repressor, glutathione disulfide-activated inhibitor and high pressure-activated inhibitor. It caused biphasic kinetics of inhibition which could be potentiated by ATP. Its activation was prevented by cAMP or glucose 6-phosphate. The high pO2-inhibitor could be partially purified from post-ribosomal supernatant containing ribosomal salt wash by precipitation between 0-50% (NH4)2SO4-saturation, Sephadex G-100, and DEAE-cellulose chromatography.  相似文献   

13.
ABSTRACT

In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.  相似文献   

14.
Porin OmpC from Escherichia coli was reconstituted in liposomes and its gating kinetics were recorded at high hydrostatic pressure, up to 90 MPa, using a development of the patch clamp technique. The composition of the recording solution influenced the results but generally high hydrostatic pressure favoured channel opening.  相似文献   

15.
High hydrostatic pressure was used for concomitant solubilization and refolding of insoluble endostatin (ES) aggregated as inclusion bodies (IBs). High hydrostatic pressure (200 MPa or 2 kbar) was applied in combination with nondenaturing concentrations of guanidine hydrochloride. High levels of correctly folded ES (90 mg/L culture) were obtained after optimization/standardization of the procedure by applying pressures of 200 MPa for 16 h in 1.5 M guanidine hydrochloride/0.5 mM oxidized glutathione and reduced glutathione. Refolded ES was purified by affinity chromatography on a heparin column and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting, size exclusion HPLC, circular dichroism, and intrinsic fluorescence. We demonstrated that high pressure can successfully convert insoluble IBs of ES expressed in Escherichia coli into an ES preparation with native tertiary structure and full biological activity.  相似文献   

16.
Pregnant rabbit mammary gland explants cultured with insulin, prolactin and cortisol, synthesise and secrete transferrin radiolabelled with [3H]leucine or [3H]mannose. Omission of prolactin from the culture medium inhibited the incorporation of [3H]leucine into casein but not transferrin. Total transferrin secreted under these conditions was approx. 75% of the control (+ prolactin) value measured by rocket immunoelectrophoresis. Little incorporation of [3H]mannose into transferrin was seen in the absence of prolactin suggesting a lack of glycosylation of the protein. Dual label experiments with [3H]mannose and [14C]leucine confirmed this. The decreased incorporation of [3H]mannose into dolichol linked intermediates suggests a general effect on protein N-glycosylation in the absence of prolactin. Thus, while the synthesis of the polypeptide backbone of transferrin does not require prolactin its glycosylation does.  相似文献   

17.
    
We have investigated the effect of succinylacetone (4,6-dioxoheptanoic acid) on hemoglobin synthesis and iron metabolism in reticulocytes. Succinylacetone, 0.1 and 1 mM, inhibited [2-14C]glycine incorporation into heme by 91.2 and 96.4%, respectively, and into globin by 85 and 90.2%, respectively. 60 μM hemin completely prevented the inhibition of globin synthesis by succinylacetone, indicating that succinylacetone inhibits specifically the synthesis of heme. Added porphobilinogen, but not δ-aminolevulinic acid, partly overcame the inhibition of 59Fe incorporation into heme caused by succinylacetone suggesting that the drug inhibits δ-aminolevulinic acid dehydratase in reticulocytes. Succinylacetone, 10 μM, 0.1 and 1 mM, inhibited 59Fe incorporation into heme by 50, 90 and 93%, respectively, but stimulated reticulocyte 59Fe uptake by about 25–30%. In succinylacetone-treated cells 59Fe accumulates in a fraction containing plasma membranes and mitochondria as well as cytosol ferritin and an unidentified low molecular weight fraction obtained by Sephacryl S-200 chromatography. Reincubation of washed succinylacetone- and 59Fe-transferrin-pretreated reticulocytes results in the transfer of 59Fe from the particulate fraction (plasma membrane plus mitochondria) into hemoglobin and this process is considerably stimulated by added protoporphyrin. Although the nature of the iron accumulated in the membrane-mitochondria fraction in succinylacetone-treated cells is unknown some of it is utilizable for hemoglobin synthesis, while cytosolic ferritin iron would appear to be mostly unavailable for incorporation into heme.  相似文献   

18.
A single protein, Mr approximately 50000, is shown to be phosphorylated during incubation of a mono- and polyribosome fraction of rabbit reticulocytes with [gamma-32P]ATP at a low ionic strength. This protein has been identified as the elongation factor 1 alpha (EF-1 alpha). The phosphorylated EF-1 alpha, in contrast to the unmodified factor, is not detected in complexes with mono- and polyribosomes. It is suggested that the phosphorylation of EF-1 alpha can result in its decompartmentation from polyribosomes and thus affect the rate of protein synthesis.  相似文献   

19.
The accurate decoding of the genetic information by the ribosome relies on the communication between the decoding center of the ribosome, where the tRNA anticodon interacts with the codon, and the GTPase center of EF-Tu, where GTP hydrolysis takes place. In the A/T state of decoding, the tRNA undergoes a large conformational change that results in a more open, distorted tRNA structure. Here we use a real-time transient fluorescence quenching approach to monitor the timing and the extent of the tRNA distortion upon reading cognate or near-cognate codons. The tRNA is distorted upon codon recognition and remains in that conformation until the tRNA is released from EF-Tu, although the extent of distortion gradually changes upon transition from the pre- to the post-hydrolysis steps of decoding. The timing and extent of the rearrangement is similar on cognate and near-cognate codons, suggesting that the tRNA distortion alone does not provide a specific switch for the preferential activation of GTP hydrolysis on the cognate codon. Thus, although the tRNA plays an active role in signal transmission between the decoding and GTPase centers, other regulators of signaling must be involved.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号