首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1.1. As reported previously (Robinson, 1988) the Ca2+-induced self-association reaction of the protein hyalin, purified from the sea urchin extraembryonic hyaline layer, was modulated by both Mg2+ and NaCl.
  • 2.2. In the presence of 400 mM NaCl the apparent dissociation constant (Ca2+) decreased five-fold from 4.8 ± 1.1 mM in the absence to 0.9 ± 0.5 mM in the presence of 20 mM Mg2+.
  • 3.3. The potentiating effect of Mg2+ occurred with an apparent dissociation constant (Mg2+) of 4.6 ± 0.5mM.
  • 4.4. In the absence of Ca2+ or NaCl hyalin dissociated from isolated hyaline layers indicating that the behavior of hyalin within the layer is predictable from results obtained with the purified protein.
  相似文献   

2.
The protein hyalin, a major component of the sea urchin extraembryonic hyaline layer, was previously shown to undergo a Ca(2+)-induced self-association into large aggregates (gelation). This reaction represented a major step in assembly of the layer. In the experiments reported here, digestion with trypsin resulted in a rapid dissociation of hyalin into a mixture of peptides which retained the capacity to bind Ca2+. However, unlike intact hyalin, none of these peptides associated into large aggregates (gelation) in the presence of Ca2+, Mg2+, and NaCl. Loss of the ability to undergo gelation was not accompanied by any significant change in the content of acidic plus amide amino acid residues. Decreasing the pH to 5.6 resulted in a loss of 25% of hyalin's Ca(2+)-binding capacity but had no effect on the ability of the protein to undergo gelation. Peptide fragments were only partially effective at inhibiting hyalin gelation. Clearly, not all the Ca(2+)-binding sites were required for hyalin gelation and Ca2+ binding alone was insufficient to drive this reaction. In addition, hyalin appeared to possess two classes of protein-protein interaction domains, one of which was essential for gelation.  相似文献   

3.
A major protein component of the gel-like, embryonic hyaline layer of Strongylocentrotus purpuratus has been purified and characterized. The protein retains the ability to form an insoluble gel in the presence of specific divalent cations, a property characteristic of the hyaline material. Using a light scattering assay developed to measure the initial rate of hyalin gelation, we have been able to show that calcium alone is capable of initiating this reaction but that calcium and magnesium are synergistic in their effect. In the absence of divalent cations, the major hyalin protein has a molecular weight of 9.2 +/- 0.5 X 10(5) and a sedimentation coefficient of 11.6 S; these and other data indicate that the protein assumes a very elongated, rod-like structure in solution. Smaller amounts of two additional proteins, 8.8 and 6.5 S, are present in the hyalin fraction when the jelly coat and vitelline layer are subjected to a more stringent acid treatment early in the isolation procedure.  相似文献   

4.
The protein composition and organization of the sea urchin extraembryonic hyaline layer was examined. Hyalin and a polypeptide of 45 kilodaltons (kDa) were present in hyaline layers isolated from 1-h-old embryos through to the pluteus larva stage. In contrast, several polypeptide species ranging in size from 175 to 32 kDa either decreased in amount or disappeared from the layer as embryonic development proceeded. Concomitant with the changes in composition, hyaline layers became progressively more refractory to dissolution by washing in Ca2+, Mg2(+)-free seawater. Incubation of intact layers, isolated from 1-h-old embryos, with proteinase K resulted in the selective digestion of hyalin and was accompanied by release of the 45-kDa polypeptide from the layers. Washing intact layers in 20 mM Tris (pH 8.0) also resulted in the selective removal of hyalin and the 45-kDa polypeptide. The Ca2(+)-precipitable protein hyalin, alone among the hyaline layer polypeptides, bound the Ca2(+)-antagonist ruthenium red. These results suggest a structural organization within the hyaline layer that is both heterogenous and dynamic throughout embryonic development.  相似文献   

5.
We have purified a 32 kilodalton (kDa) protein that localized with isolated, intact hyaline layers prepared from 1-h-old embryos. The protein appeared not to bind calcium and was not quantitatively released from 1-h-old embryos in the absence of Ca2+ and Mg2+. Using polyclonal antiserum prepared against the 32-kDa protein, the antigen was detected throughout embryonic development. By the hatched blastula stage of development, the 32-kDa protein was replaced by a species of slightly smaller molecular mass. Quantitative determination indicated that the 32-kDa protein accounted for approximately 6% of the total protein present in the sea urchin egg. This result is suggestive of a structural role for the 32-kDa protein that is required throughout embryonic development, although perhaps in a modified form from the hatched blastula stage on.  相似文献   

6.
Hyaline layers, freshly prepared from one-hour-old embryos, were devoid of gelatin-cleavage activity. However, upon storage at 4 degrees C, gelatin-cleavage activities appeared; three species of apparent mol mass 94 --> 117-, 90-, and 45-kDa were seen. All three species required zinc for activity. Using gel-exclusion chromatography we separated the 94 --> 117-, and 90-kDa species from the 45-kDa activity. The two higher mol mass species were inhibited by ethylenebis (oxyethylenenitrilo) tetraacetic acid and the lost activity was restored by calcium. Reconstitution of activity occurred with an apparent dissociation constant (calcium) of 5 microM. The presence of millimolar concentrations of magnesium had a minimal inhibitory effect on activity. The thermal denaturation profile of the higher mol mass gelatin-cleavage activity was significantly different in the presence and absence of calcium. Stabilization of these activities against thermal denaturation at 60 degrees C occurred with an apparent dissociation constant (calcium) of 0.6 mM. Magnesium had no significant effect on the thermal denaturation profile. Collectively, these results suggest at least two different modes of interaction between calcium and the higher mol mass gelatinases. These conclusions are discussed in the context of the high calcium and magnesium concentrations present in the sea water environment of the sea urchin embryo.  相似文献   

7.
The self-association reaction of hyalin, a major protein component of the sea-urchin extraembryonic hyaline layer, was examined. Concentrations of Ca2+ below 1 mM had little effect on the hyalin gelation reaction, but higher concentrations of the cation induced protein aggregation. Quantitative aggregate formation required a Ca2+ concentration in excess of 10 mM. This reaction was modulated by both NaCl and Mg2+. The effectiveness of Ca2+ in inducing hyalin gelation was markedly enhanced in the presence of 500 mM-NaCl, the concentration found in sea water. Similarly, 20 mM-Mg2+ also enhanced Ca2+-induced hyalin gelation. Neither NaCl nor Mg2+ alone induced hyalin gelation. Concentrations of Ca2+ as low as 1 mM effectively protected hyalin from tryptic digestion both in the presence and in the absence of 500 mM-NaCl. The latter result suggested that, although higher concentrations of Ca2+ were required to induce the hyalin gelation reaction, lower concentrations of the cation could mediate a protein-protein interaction in an NaCl-independent fashion. These results identify the parameters that modulate hyalin self-association, a reaction that is essential for hyaline-layer assembly around the developing sea-urchin embryo.  相似文献   

8.
The interaction of metal ions with the sea urchin extraembryonic coat protein hyalin was investigated. Hyalin, immobilized on nitrocellulose membrane, bound Ca2+ and this interaction was disrupted by ruthenium red and selective metal ions. The divalent cations Cd2+ and Mn2+, when present at a concentration of 30 microM, displaced hyalin-bound Ca2+. In competition assays, 1 mM Cd2+ or 3 mM Mn2+ were effective competitors with Ca2+ for binding to hyalin. Cobalt, at a concentration of 30 microM, was unable to displace protein-bound Ca2+, but was effective in competition assays at a concentration of at least 10 mM. Magnesium and the monovalent cation Cs+ were unable to disrupt Ca2(+)-hyalin interaction. Interestingly, Cd2+, Mn2+, and Co2+ mimicked the biological effects of Ca2+ on the hyalin self-association reaction. These results clearly demonstrate that the Ca2(+)-binding sites on hyalin can selectively accommodate other divalent cations in a biologically active configuration.  相似文献   

9.
  • 1.1. As reported previously (Hopper and Robinson, 1990; Int. J. Biochem. 22, 1165–1170) the sea urchin extraembryonic coat protein hyalin undergoes a Ca2+-induced self-association into an insoluble gel (gelation) in the presence of Mg2+ and/or NaCl.
  • 2.2. A 275 kDa peptide fragment, generated by limited tryptic digestion of hyalin, binds Ca2++ but does not undergo gelation in the presence of Ca2+, Mg2+ and NaCl.
  • 3.3. Comparisons between the capacities of hyalin and the 275 kDa peptide fragment to bind Ca2+ indicate that the latter binds 88% less Ca2+ than hyalin.
  • 4.4. However, the presence of Ca2+ alone, at a concentration of 5 mM, protects the 275 kDa peptide fragment from further digestion by trypsin mimicking the effect of this cation in protecting hyalin.
  • 5.5. Gel exclusion Chromatographie analyses of the 275 kDa peptide fragment, both in the presence and absence of 5 mM Ca2+, indicate that this cation does induce self-association of the fragment.
  • 6.6. These results provide information on the organization of the functional domains on hyalin which are required for gel formation.
  相似文献   

10.
A third major, calcium-insoluble component of the sea urchin (Strongylocentrotus purpuratus) hyaline layer has been purified and physically characterized. In the absence of divalent cations, the native, soluble protein has a sedimentation coefficient of 9.6 S and a molecular weight of 4.5 +/- 0.1 x 10(5). These data indicate that this large protein assumes an elongated, nonspherical conformation in solution. Its sedimentation behavior and its mobility on nondenaturing electrophoretic gels distinguish the 9.6 S protein from the 11.6 S and 6.4 S hyalin proteins we have previously characterized. That the 6.4 S, 9.6 S, and 11.6 S proteins are the major calcium-insoluble structural components of the hyaline layer is supported by the fact that we have found them in a variety of hyalin protein fractions prepared by a number of standard approaches. All three proteins are precipitated by calcium ions, thus fitting the operational definition of hyalin. Evidence is presented that the 11.6 S protein may overlie the 9.6 S protein in the hyaline layer.  相似文献   

11.
We have identified two inducible, gelatin-cleaving activities in the sea urchin extraembryonic matrix, the hyaline layer. Isolated hyaline layers, incubated in the presence of benzamidine, were devoid of gelatin-cleavage activities with apparent molecular mass less then 80k. However, when layers were incubated for 9-11 h in the absence of benzamidine, gelatin-cleavage activities, with apparent molecular mass 40- and 50k, were detected. Induction required the presence of NaCl and CaCl(2) at concentrations similar to those found in seawater and readdition of the reversible serine protease inhibitor benzamidine prevented induction. Both gelatin-cleaving activities were activated by calcium at a concentration similar to the calcium concentration found in seawater. Magnesium, also a major cationic species present in seawater, could not replace calcium as the activating ion. In addition, magnesium could not compete with calcium for binding to the gelatinases. Both cleavage activities showed substrate specificity and each failed to cleave bovine serum albumin, bovine hemoglobin or casein. Cleavage activity towards gelatin was inhibited by benzamidine and aminoethyl benzenesulfonyl fluoride, indicating that both activities belonged to the serine class of proteases. The induced 40-kDa activity displayed similar properties to those of a comigrating, gelatin-cleaving activity present in 69-h-old embryos.  相似文献   

12.
13.
We have investigated the biochemical and functional properties of toposome, a major protein component of sea urchin eggs and embryos. Atomic force microscopy was utilized to demonstrate that a Ca(2+)-driven change in secondary structure facilitated toposome binding to a lipid bilayer. Thermal denaturation studies showed that toposome was dependent upon calcium in a manner paralleling the effect of this cation on secondary and tertiary structure. The calcium-induced, secondary, and tertiary structural changes had no effect on the chymotryptic cleavage pattern. However, the digestion pattern of toposome bound to phosphatidyl serine liposomes did vary as a function of calcium concentration. We also investigated the interaction of this protein with various metal ions. Calcium, Mg(2+), Ba(2+), Cd(2+), Mn(2+), and Fe(3+) all bound to toposome. In addition, Cd(2+) and Mn(2+) displaced Ca(2+), prebound to toposome, while Mg(2+), Ba(2+), and Fe(3+) had no effect. Collectively, these results further enhance our understanding of the role of Ca(2+) in modulating the biological activity of toposome.  相似文献   

14.
Hyalin is a large (ca. 350 x 10(3) kD by gel electrophoresis) molecule that contributes to the hyalin layer surrounding the sea urchin embryo. In previous work a mAb (McA Tg-HYL), specific for hyalin, was found to inhibit cell-hyalin adhesion and block morphogenesis of whole embryos (Adelson, D. L., and T. D. Humphreys. 1988. Development. 104:391-402). In this report, hyalin ultrastructure was examined via rotary shadowing. Hyalin appeared to be a filamentous molecule approximately 75-nm long with a globular "head" about 12 nm in diameter that tended to form aggregates by associating head to head. Hyalin molecules tended to associate with a distinct high molecular weight globular particle ("core"). In fractions containing the core particle often more than one hyalin molecule were seen to be associated with the core. The core particle maintained a tenacious association with hyalin throughout purification procedures. The site(s) of McA Tg-HYL binding to the hyalin molecule were visualized by decorating purified hyalin with the antibody and then rotary shadowing the complex. In these experiments, McA Tg-HYL attached to the hyalin filament near the head region in a pattern suggesting that more than one antibody binding site exists on the hyalin filament. From the ultrastructural data and from the cell adhesion data presented earlier we conclude that hyalin is a filamentous molecule that binds to other hyalin molecules and contains multiple cell binding sites. Attempts were made to demonstrate the existence of lower molecular weight hyalin precursors. Whilst no such precursors could be identified by immunoprecipitation of in vivo labeled embryo lysates, immunoprecipitation of in vitro translation products suggested such precursors (ca 40 x 10(3) kD) might exist.  相似文献   

15.
The sea urchin embryo hyaline layer is an extracellular investment which develops within 20 min postinsemination of Strongylocentrotus purpuratus eggs and contains a single calcium-precipitable subunit termed hyalin. Other ultrastructural and biochemical studies have suggested that hyalin is localized in the cortical granules. We have examined the hypothesis that hyalin is a cell surface protein of the unfertilized egg using vectorial lactoperoxidase-catalyzed radioiodination. Extracts of labeled unfertilized eggs contained several labeled proteins, one of which was electrophoretically indistinguishable from authentic hyalin isolated by each of three different procedures. Pronase digestion of labeled unfertilized eggs removed 75% of the label, but the labeled hyalin-like molecule was still present in whole cell extracts. Upon insemination, pronase-digested, labeled eggs formed an apparently normal hyaline layer and whole cell extracts contained the labeled hyalin-like molecule. Denuded, labeled eggs were inseminated and the hyaline layer was selectively solubilized in calcium- and magnesium-free artificial seawater. Labeled hyalin was purified from this crude hyalin preparation to constant specific radioactivity and apparent homogeneity as shown by gel electrophoresis. These data strongly suggest that hyalin or a precursor is a cell surface protein of the unfertilized sea urchin egg.  相似文献   

16.
The hyaline layer (HL) is an apically located extracellular matrix (ECM) which surrounds the sea urchin embryo from the time of fertilization until metamorphosis occurs. While gelatin-cleavage activities were absent from freshly prepared hyaline layers, a dynamic pattern of activities developed in layers incubated at 15 or 37 degrees C in Millipore-filtered sea water (MFSW). Cleavage activities at 90, 55, 41, and 32 kDa were evident following incubation at either temperature. The activation pathway leading to the appearance of these species was examined to determine the minimum salt conditions required for processing and to establish precursor-product relationships. In both qualitative and quantitative assays, the purified 55 kDa gelatinase activity was inhibited by 1,10-phenanthroline (a zinc-specific chelator) and ethylenebis (oxyethylenenitrilo) tetraacetic acid (EGTA). Calcium reconstituted the activity of the EGTA-inhibited enzyme with an apparent dissociation constant (calcium) of 1.2 mM. Developmental substrate gel analysis was performed using various stage embryos. The 55 and 32 kDa species comigrated with gelatin-cleavage activities present in sea urchin embryos. Collectively, the results reported here document a zymogen activation pathway which generates a 55 kDa, gelatin-cleaving activity within the extraembryonic HL. This species displayed characteristics of the matrix metalloproteinase class of ECM modifying enzymes.  相似文献   

17.
A monoclonal antibody (MAb No. 25-16), raised against purified cortical secretory vesicles (CVs) from the eggs of Strongylocentrotus purpuratus, has been used to identify a previously uncharacterized CV-derived polypeptide component of the sea urchin fertilization envelope (FE). MAb No. 25-16, an IgG1, bound to a group of proteins with Mr approximately 200,000 on immunoblots of CVs. This same group of proteins also was detected in fertilization product and in soft FEs prepared from early embryos, indicating that the antigen is released at fertilization by CV exocytosis and becomes incorporated into the FE. The multiple components recognized by MAb No. 25-16 apparently did not result from proteolysis during sample preparation or differential N-linked glycosylation. No simplification of the SDS-gel or immunoblot patterns was observed when samples of fertilization product or cell surface complex were prepared in the presence of a cocktail of protease inhibitors; nor was a change in mobility of any of the antigen forms detected following treatment with endoglycosidase F. Upon partial denaturation and reduction of the protein by incubation at room temperature in the presence of SDS and dithiothreitol, the antigen was shown to undergo a decrease in relative mobility on SDS-PAGE. Complete reduction and denaturation, by boiling in dithiothreitol-containing SDS sample buffer or by an on-blot reduction technique, resulted in loss of the epitope. The protein component recognized by MAb No. 25-16 underwent a striking increase in mobility on SDS-PAGE after chelation of calcium ions with EGTA. Immunogold labeling on thin sections of unfertilized eggs revealed that the antigen is located in the spiral lamellar cores of all CVs. In fertilized eggs, fixed 5 min after insemination, the antigen was detected in the FE. Based on these biochemical and immunological data, we suggest that the antigen recognized by MAb No. 25-16 is released exocytotically from the CVs into the perivitelline space at fertilization and becomes incorporated into the FE. The abundance of this antigen suggests that it may function as a structural component of the FE.  相似文献   

18.
An antigen is described which is a marker for the oral ectoderm and foregut of the sea urchin embryo. In Lytechinus variegatus, the antigen is first detectable by immunofluorescence on the surface of fertilized eggs, and remains globally distributed through the early stages of gastrulation. Thereafter the antigen is localized to the oral ectoderm and foregut, coincident with the morphogenesis of these regions. The antigen is a large, detergent-insoluble, filamentous glycoprotein associated with the tips of the microvilli in the hyaline layer. This glycoprotein is present in two forms, a approximately 350-kDa form that is maternally synthesized and a much larger form which is synthesized at late gastrula stage as a 350-kDa precursor before becoming modified and assembled into the hyaline layer. The timing of synthesis of the zygotic form of the molecule correlates precisely with the localized expression of the antigen. The antigen copurifies with intact hyaline layers and cosediments with hyalin in the presence of calcium, suggesting that it is a structural component of the hyaline layer.  相似文献   

19.
20.
Evidence is given to support the classification of the hyaline layer of sea urchin embryos and reaggregating cells as a collagen-containing extracellular matrix. Ruthenium red staining shows the presence of striated fibril-like structures, dense spheroids, crystalline lattice structures and filamentous material. Collagenase digestion causes disappearance of the fibril-like structures; hyaluronidase treatment causes a diminution of other matrix components, but does not affect the fibrillar structures. The hyaline layer maintains the integrity of the embryo and is also involved in morphogenesis, which are among the functions of extracellular matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号