共查询到20条相似文献,搜索用时 15 毫秒
1.
Murthy Karnam S.; Makhlouf Gabriel M. 《American journal of physiology. Cell physiology》1998,274(5):C1199
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3. 相似文献
2.
We focused our attention on Ca(2+) release from the endoplasmic reticulum through a cluster of inositol(1,4,5)-trisphosphate (IP(3)) receptor channels. The random opening and closing of these receptors introduce stochastic effects that have been observed experimentally. Here, we present a stochastic version of Othmer-Tang model (OTM) for IP(3) receptor clusters. We address the average behavior of the channels in response to IP(3) stimuli. In our stochastic simulation we found that the fraction of open channels versus [IP(3)] follows a Hill curve, whose associate Hill coefficient increases when intracellular Ca(2+) level increase. This finding suggests that feedback from cytosolic Ca(2+) plays a key role in the channel response to IP(3). We also study several aspects of the stochastic properties of Ca(2+) release and we compare with experimental observations. 相似文献
3.
Miyano K Morioka N Sugimoto T Shiraishi S Uezono Y Nakata Y 《Neurochemistry international》2010,57(8):923-934
Substance P (SP) plays an important role in pain transmission through the stimulation of the neurokinin (NK) receptors expressed in neurons of the spinal cord, and the subsequent increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) as a result of this stimulation. Recent studies suggest that spinal astrocytes also contribute to SP-related pain transmission through the activation of NK receptors. However, the mechanisms involved in the SP-stimulated [Ca(2+)](i) increase by spinal astrocytes are unclear. We therefore examined whether (and how) the activation of NK receptors evoked increase in [Ca(2+)](i) in rat cultured spinal astrocytes using a Ca(2+) imaging assay. Both SP and GR73632 (a selective agonist of the NK1 receptor) induced both transient and sustained increases in [Ca(2+)](i) in a dose-dependent manner. The SP-induced increase in [Ca(2+)](i) was significantly attenuated by CP-96345 (an NK1 receptor antagonist). The GR73632-induced increase in [Ca(2+)](i) was completely inhibited by pretreatment with U73122 (a phospholipase C inhibitor) or xestospongin C (an inositol 1,4,5-triphosphate (IP(3)) receptor inhibitor). In the absence of extracellular Ca(2+), GR73632 induced only a transient increase in [Ca(2+)](i). In addition, H89, an inhibitor of protein kinase A (PKA), decreased the GR73632-mediated Ca(2+) release from intracellular Ca(2+) stores, while bisindolylmaleimide I, an inhibitor of protein kinase C (PKC), enhanced the GR73632-induced influx of extracellular Ca(2+). RT-PCR assays revealed that canonical transient receptor potential (TRPC) 1, 2, 3, 4 and 6 mRNA were expressed in spinal astrocytes. Moreover, BTP2 (a general TRPC channel inhibitor) or Pyr3 (a TRPC3 inhibitor) markedly blocked the GR73632-induced sustained increase in [Ca(2+)](i). These findings suggest that the stimulation of the NK-1 receptor in spinal astrocytes induces Ca(2+) release from IP(3-)sensitive intracellular Ca(2+) stores, which is positively modulated by PKA, and subsequent Ca(2+) influx through TRPC3, which is negatively regulated by PKC. 相似文献
4.
Modulation of intracellular free Ca2+ concentration by IP3-sensitive and IP3-insensitive nonmitochondrial Ca2+ pools 总被引:8,自引:0,他引:8
Intracellular Ca2+ pools play an important role in the adjustment of cytosolic free Ca2+ concentrations. This review summarizes the recent knowledge on receptor-mediated Ca2+ release and Ca2+ uptake mechanisms in Ca2+ stores of exocrine cells taking the exocrine pancreas and the parotid gland as an example. The intracellular mediator for agonist-induced Ca2+ release is inositol 1,4,5-trisphosphate (IP3) which acts by opening Ca2+ channels from the endoplasmic reticulum or a more specialized organelle called 'calciosome'. This Ca2+ release is the major event to increase cytosolic free Ca2+ concentrations of exocrine glands from a resting level of approximately 10(-7) mol/l to approximately 10(-6) mol/l. Subsequently also Ca2+ influx from the extracellular fluid into the cell is increased which involves the action of inositol 1,3,4,5-tetrakisphosphate (IP4). Intracellular nonmitochondrial Ca2+ reuptake occurs into IP3-sensitive (IsCaP) as well as into IP3-insensitive Ca2+ pools Ca2+ pools (IisCaP). While Ca2+ uptake into the IisCaP is mediated by a vanadate-sensitive Ca2+ pump, Ca2+ uptake into the IsCaP is mediated by a Ca2+/H+ exchanger at the expense of an H+ gradient which is established by a vacuolar type H+ pump present in the same Ca2+ pool. During stimulation both Ca2+ pools, IsCaP and IisCaP, are probably connected, the nature of which has not yet been clarified. It is suggested that GTP and/or IP4 control Ca2+ conveyance between intracellular Ca2+ pools by forming Ca2+-carrying junctions between membranes. Other models propose that Ca2+, which is released by IP3, induces Ca2+ release from another Ca2+ pool. Taking into account that H+ transport is present in IP3-sensitive Ca2+ pools the possibility of pH-regulated Ca2+ channels in the IisCaP, located in close neighbourhood to the IsCaP, is also considered. 相似文献
5.
Background
Changes in ionic concentration have a fundamental effect on numerous physiological processes. For example, IP3-gated thapsigargin sensitive intracellular calcium (Ca2+) storage provides a source of the ion for many cellular signaling events. Less is known about the dynamics of other intracellular ions. The present study investigated the intracellular source of zinc (Zn2+) that has been reported to play a role in cell signaling.Results
In primary cultured cortical cells (neurons) labeled with intracellular fluorescent Zn2+ indicators, we showed that intracellular regions of Zn2+ staining co-localized with the endoplasmic reticulum (ER). The latter was identified with ER-tracker Red, a marker for ER. The colocalization was abolished upon exposure to the Zn2+ chelator TPEN, indicating that the local Zn2+ fluorescence represented free Zn2+ localized to the ER in the basal condition. Blockade of the ER Ca2+ pump by thapsigargin produced a steady increase of intracellular Zn2+. Furthermore, we determined that the thapsigargin-induced Zn2+ increase was not dependent on extracellular Ca2+ or extracellular Zn2+, suggesting that it was of intracellular origin. The applications of caged IP3 or IP3-3Kinase inhibitor (to increase available IP3) produced a significant increase in intracellular Zn2+.Conclusions
Taken together, these results suggest that Zn2+ is sequestered into thapsigargin/IP3-sensitive stores and is released upon agonist stimulation. 相似文献6.
Brevetoxin-3 (PbTx-3), described to increase the open probability of voltage-dependent sodium channels, caused trains of action potentials and fast oscillatory changes in fluorescence intensity of fluo-3-loaded rat skeletal muscle cells in primary culture, indicating that the toxin increased intracellular Ca(2+) levels. PbTx-3 did not elicit calcium transients in dysgenic myotubes (GLT cell line), lacking the alpha1 subunit of the dihydropyridine receptor (DHPR), but after transfection of the alpha1DHPR cDNA to GLT cells, PbTx-3 induced slow calcium transients that were similar to those of normal cells. Ca(2+) signals evoked by PbTx-3 were inhibited by blocking either IP(3) receptors, with 2-aminoethoxydiphenyl borate, or phospholipase C with U73122. PbTx-3 caused a tetrodotoxin-sensitive increase in intracellular IP(3) mass levels, dependent on extra-cellular Na(+). A similar increase in IP(3) mass was induced by high K(+) depolarization but no action potential trains (nor calcium signals) were elicited by prolonged depolarization under current clamp conditions. The increase in IP(3) mass induced by either PbTx-3 or K(+) was also detected in Ca(2+)-free medium. These results establish that the effect of the toxin on both intracellular Ca(2+) and IP(3) levels occurs via a membrane potential sensor instead of directly by Na(+) flux and supports the notion of a train of action potentials being more efficient as a stimulus than sustained depolarization, suggesting that tetanus is the physiological stimulus for the IP(3)-dependent calcium signal involved in regulation of gene expression. 相似文献
7.
Mohanty Madhumita Jena; Ye Maian; Li Xingli; Rossi Noreen F. 《American journal of physiology. Cell physiology》2001,281(2):C555
Hypotonicswelling increases the intracellular Ca2+ concentration([Ca2+]i) in vascular smooth muscle cells(VSMC). The source of this Ca2+ is not clear. To study thesource of increase in [Ca2+]i in response tohypotonic swelling, we measured [Ca2+]i infura 2-loaded cultured VSMC (A7r5 cells). Hypotonic swelling produced a40.7-nM increase in [Ca2+]i that was notinhibited by EGTA but was inhibited by 1 µM thapsigargin. Priordepletion of inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ stores with vasopressin did not inhibit the increasein [Ca2+]i in response to hypotonic swelling.Exposure of 45Ca2+-loaded intracellular storesto hypotonic swelling in permeabilized VSMC produced an increase in45Ca2+ efflux, which was inhibited by 1 µMthapsigargin but not by 50 µg/ml heparin, 50 µM ruthenium red, or25 µM thio-NADP. Thus hypotonic swelling of VSMC causes a release ofCa2+ from the intracellular stores from a novel sitedistinct from the IP3-, ryanodine-, and nicotinic acidadenine dinucleotide phosphate-sensitive stores. 相似文献
8.
We have examined the effect of the Ca2+ (Mg2+)-ATPase inhibitors thapsigargin (TG) and vanadate on ATP-dependent 45Ca2+ uptake into IP3-sensitive Ca2+ pools in isolated microsomes from rat pancreatic acinar cells. The inhibitory effect of TG was biphasic. About 40–50% of total Ca2+ uptake was inhibited by TG up to 10 nm (apparent Ki4.2 nm, Ca2+ pool I). An additional increase of inhibition up to 85–90% of total Ca2+ uptake could be achieved at 15 to 20 nm of TG (apparent Ki12.1 nm, Ca2+ pool II). The rest was due to TG-insensitive contaminating plasma membranes and could be inhibited by vanadate (apparent Ki10 m). In the absence of TG, increasing concentrations of vanadate also showed two phases of inhibition of microsomal Ca2+ uptake. About 30–40% of total Ca2+ uptake was inhibited by 100 m of vanadate (apparent Ki18 m, Ca2+ pool II). The remaining 60–70% could be inhibited either by vanadate at concentrations up to 1 mm (apparent Ki300 m) or by TG up to 10 nm (Ca2+ pool I). The amount of IP3-induced Ca2+ release was constant at 25% over a wide range of Ca2+ filling. About 10–20% remained unreleasable by IP3. Reduction of IP3 releasable Ca2+ in the presence of inhibitors showed similar dose-response curves as Ca2+ uptake (apparent Ki 3.0 nm for IP3-induced Ca2+ release as compared to 4.2 nm for Ca2+ uptake at TG up to 10 nm) indicating that the highly TG-sensitive Ca2+ pump fills the IP3-sensitive Ca2+ pool I. At TG concentrations >10 nm which blocked Ca2+ pool II the apparent Ki values were 11.3 and 12.1 nm, respectively. For inhibition by vanadate up to 100 m the apparent Ki values were 18 m for Ca2+ uptake and 7 m for Ca2+ release (Ca2+ pool II). At vanadate concentrations up to 1 mm the apparent Ki values were 300 and 200 m, respectively (Ca2+ pool I). Both Ca2+ pools I and II also showed different sensitivities to IP3. Dose-response curves for IP3 in the absence of inhibitors (control) showed an apparent Km value for IP3 at 0.6 m. In the presence of TG (inhibition of Ca2+ pool I) the curve was shifted to the left with an apparent Km for IP3 at 0.08 m. In the presence of vanadate (inhibition of Ca2+ pool II), the apparent Km for IP3 was 2.1 m. These data allow the conclusion that there are at least three different Ca2+ uptake mechanisms present in pancreatic acinar cells: TG- and IP3 insensitive but highly vanadate-sensitive Ca2+ uptake occurs into membrane vesicles derived from plasma membranes. Two Ca2+ pools with different TG-, vanadate- and IP3-sensitivities are most likely located in the endoplasmic reticulum at different cell sites, which could have functional implications for hormonal stimulation of pancreatic acinar cells.This work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 246. The authors wish to thank Dr. KlausDieter Preuß for valuable discussions and Mrs. Gabriele Mörschbächer for excellent secretarial help. 相似文献
9.
John G. McCarron Susan Chalmers Debbi MacMillan Marnie L. Olson 《Journal of cellular physiology》2010,224(2):334-344
Smooth muscle responds to IP3‐generating agonists by producing Ca2+ waves. Here, the mechanism of wave progression has been investigated in voltage‐clamped single smooth muscle cells using localized photolysis of caged IP3 and the caged Ca2+ buffer diazo‐2. Waves, evoked by the IP3‐generating agonist carbachol (CCh), initiated as a uniform rise in cytoplasmic Ca2+ concentration ([Ca2+]c) over a single though substantial length (~30 µm) of the cell. During regenerative propagation, the wave‐front was about 1/3 the length (~9 µm) of the initiation site. The wave‐front progressed at a relatively constant velocity although amplitude varied through the cell; differences in sensitivity to IP3 may explain the amplitude changes. Ca2+ was required for IP3‐mediated wave progression to occur. Increasing the Ca2+ buffer capacity in a small (2 µm) region immediately in front of a CCh‐evoked Ca2+ wave halted progression at the site. However, the wave front does not progress by Ca2+‐dependent positive feedback alone. In support, colliding [Ca2+]c increases from locally released IP3 did not annihilate but approximately doubled in amplitude. This result suggests that local IP3‐evoked [Ca2+]c increases diffused passively. Failure of local increases in IP3 to evoke waves appears to arise from the restricted nature of the IP3 increase. When IP3 was elevated throughout the cell, a localized increase in Ca2+ now propagated as a wave. Together, these results suggest that waves initiate over a surprisingly large length of the cell and that both IP3 and Ca2+ are required for active propagation of the wave front to occur. J. Cell. Physiol. 224: 334–344, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
10.
In sea urchin eggs, Ca2+ mobilization by nicotinic acid adenine dinucleotide phosphate (NAADP) potently self-inactivates but paradoxically induces long-term Ca2+ oscillations. We investigated whether NAADP-induced Ca2+ oscillations arise from the recruitment of other Ca2+ release pathways. NAADP, inositol trisphosphate (IP3) and cyclic ADP-ribose (cADPR) all mobilized Ca2+ from internal stores but only NAADP consistently induced Ca2+ oscillations. NAADP-induced Ca2+ oscillations were partially inhibited by heparin or 8-amino-cADPR alone, but eliminated by the presence of both, indicating a requirement for both IP3- and cADPR-dependent Ca2+ release. Thapsigargin completely blocked IP3 and cADPR responses as well as NAADP-induced Ca2+ oscillations, but only reduced the NAADP-mediated Ca2+ transient. Following NAADP-mediated release from this Ca2+ pool, the amount of Ca2+ in the Ca2+-induced Ca2+ release stores was increased. These results support a mechanism in which Ca2+ oscillations are initiated by Ca2+ release from NAADP-sensitive Ca2+ stores (pool 1) and perpetuated through cycles of Ca2+ uptake into and release from Ca2+-induced Ca2+ release stores (pool 2). These results provide the first direct evidence in support of a two-pool model for Ca2+ oscillations. 相似文献
11.
We found previously that the cytoplasmic drop isolated from internodal cells of Nitella flexilis releases Ca2+ in response to hypotonic treatment and named the phenomenon hydration-induced Ca2+ release (HICR). The HICR is assumed to be a result of activation of Ca2+ permeable channels in the membrane of Ca2+ stores in a stretch-activated manner. To prove this idea, mechanical stimulus was applied to the drop by means of shooting isotonic/hypnotic medium or silicon oil into the drop, or compressing the drop. All these mechanical stimuli induced a rapid increase in the Ca2+ concentration of the drop. The chloroplast fraction isolated from the cytoplasmic drop released Ca2+ on compression, while the chloroplast-free cytoplasm did not. In Chara corallina, the cytoplasmic drop, which shows a very weak HICR, also responded weakly to the mechanical stimulus, but the chloroplast fraction was inert. When chloroplasts from Chara were added to the chloroplast-free cytoplasm of N. flexilis, the cytoplasm recovered the mechanoresponse. Starch grains were as effective as chloroplasts. The data indicate that Ca2+ permeable channels in the membrane of Ca2+ stores in N. flexilis are really mechano-sensitive. 相似文献
12.
《Cell calcium》2017
The inositol trisphosphate (IP3) signaling pathway evokes local Ca2+ signals (Ca2+ puffs) that arise from the concerted openings of clustered IP3 receptor/channels in the ER membrane. Physiological activation is triggered by binding of agonists to G-protein-coupled receptors (GPCRs) on the cell surface, leading to cleavage of phosphatidyl inositol bisphosphate and release of IP3 into the cytosol. Photorelease of IP3 from a caged precursor provides a convenient and widely employed means to study the final stage of IP3-mediated Ca2+ liberation, bypassing upstream signaling events to enable more precise control of the timing and relative concentration of cytosolic IP3. Here, we address whether Ca2+ puffs evoked by photoreleased IP3 fully replicate those arising from physiological agonist stimulation. We imaged puffs in individual SH-SY5Y neuroblastoma cells that were sequentially stimulated by picospritzing extracellular agonist (carbachol, CCH or bradykinin, BK) followed by photorelease of a poorly-metabolized IP3 analog, i-IP3. The centroid localizations of fluorescence signals during puffs evoked in the same cells by agonists and photorelease substantially overlapped (within ∼1 μm), suggesting that IP3 from both sources accesses the same, or closely co-localized clusters of IP3Rs. Moreover, the time course and spatial spread of puffs evoked by agonists and photorelease matched closely. Because photolysis generates IP3 uniformly throughout the cytoplasm, our results imply that IP3 generated in SH-SY5Y cells by activation of receptors to CCH and BK also exerts broadly distributed actions, rather than specifically activating a subpopulation of IP3Rs that are scaffolded in close proximity to cell surface receptors to form a signaling nanodomain. 相似文献
13.
T J Shuttleworth 《The Journal of biological chemistry》1992,267(6):3573-3576
In a recent model developed to explain the apparent "quantal" nature of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3)-induced Ca2+ release from specific intracellular stores, it was proposed that Ca2+ release from the stores may itself be modulated by intraluminal levels of Ca2+, possibly via an action at a binding site on the Ins(1,4,5)P3 receptor/Ca2+ channel complex. Essential predictions of this model include a specific effect of intraluminal Ca2+ levels on the sensitivity of Ins(1,4,5)P3-induced Ca2+ release and a non-exponential decay of passive Ca2+ loss from the store following inhibition of the Ca2+ pump on the store. However, in measurements of Ins(1,4,5)P3-induced Ca2+ release and passive Ca2+ loss in permeabilized preparations of a model exocrine cell under conditions of thapsigargin-induced store depletion, we found that neither of these predicted behaviors could be demonstrated. 相似文献
14.
The 45Ca2+ uptake and 45Ca2+ release in saponin-permeabilized human lymphocytes were studied. An ATP-dependent Ca2+ uptake into a nonmitochondrial, intracellular Ca2+ store is observed which is approx. 2 orders of magnitude greater than the ATP-independent Ca2+ uptake. The Ca2+ uptake is inhibited by vanadate, but it is insensitive to oligomycin and ruthenium red. IP3 induces dose-dependent 45Ca2+ release. For half-maximum Ca2+ release 0.25-0.5 microM IP3 is required. The results of our studies suggest that 45Ca2+ is predominantly stored within the endoplasmic reticulum of the lymphocytes. 相似文献
15.
Sleep and Biological Rhythms - 相似文献
16.
Koulen P Duncan RS Liu J Cohen NE Yannazzo JA McClung N Lockhart CL Branden M Buechner M 《Cell calcium》2005,37(6):593-601
Polycystin-2, a member of the TRP family of calcium channels, is encoded by the human PKD2 gene. Mutations in that gene can lead to swelling of nephrons into the fluid-filled cysts of polycystic kidney disease. In addition to expression in tubular epithelial cells, human polycystin-2 is found in muscle and neuronal cells, but its cell biological function has been unclear. A homologue in Caenorhabditis elegans is necessary for male mating behavior. We compared the behavior, calcium signaling mechanisms, and electrophysiology of wild-type and pkd-2 knockout C. elegans. In addition to characterizing PKD-2-mediated aggregation and mating behaviors, we found that polycystin-2 is an intracellular Ca(2+) release channel that is required for the normal pattern of Ca(2+) responses involving IP(3) and ryanodine receptor-mediated Ca(2+) release from intracellular stores. Activity of polycystin-2 creates brief cytosolic Ca(2+) transients with increased amplitude and decreased duration. Polycystin-2, along with the IP(3) and ryanodine receptors, acts as a major calcium-release channel in the endoplasmic reticulum in cells where rapid calcium signaling is required, and polycystin-2 activity is essential in those excitable cells for rapid responses to stimuli. 相似文献
17.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism. 相似文献
18.
19.
Localized Ca2+ uncaging reveals polarized distribution of Ca2+-sensitive Ca2+ release sites: mechanism of unidirectional Ca2+ waves 总被引:1,自引:0,他引:1 下载免费PDF全文
Ashby MC Craske M Park MK Gerasimenko OV Burgoyne RD Petersen OH Tepikin AV 《The Journal of cell biology》2002,158(2):283-292
Ca2+-induced Ca2+ release (CICR) plays an important role in the generation of cytosolic Ca2+ signals in many cell types. However, it is inherently difficult to distinguish experimentally between the contributions of messenger-induced Ca2+ release and CICR. We have directly tested the CICR sensitivity of different regions of intact pancreatic acinar cells using local uncaging of caged Ca2+. In the apical region, local uncaging of Ca2+ was able to trigger a CICR wave, which propagated toward the base. CICR could not be triggered in the basal region, despite the known presence of ryanodine receptors. The triggering of CICR from the apical region was inhibited by a pharmacological block of ryanodine or inositol trisphosphate receptors, indicating that global signals require coordinated Ca2+ release. Subthreshold agonist stimulation increased the probability of triggering CICR by apical uncaging, and uncaging-induced CICR could activate long-lasting Ca2+ oscillations. However, with subthreshold stimulation, CICR could still not be initiated in the basal region. CICR is the major process responsible for global Ca2+ transients, and intracellular variations in sensitivity to CICR predetermine the activation pattern of Ca2+ waves. 相似文献
20.
Developmental changes in ryanodine- and IP3-sensitive Ca2+ pools in ovine basilar artery 总被引:1,自引:0,他引:1
Nauli S. M.; Williams J. M.; Akopov S. E.; Zhang L.; Pearce W. J. 《American journal of physiology. Cell physiology》2001,281(6):C1785
To explore thehypothesis that cerebrovascular maturation alters ryanodine- andinositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pool sizes, we measured total intracellularCa2+ with 45Ca and the fractions ofintracellular Ca2+ released by IP3 and/orcaffeine in furaptra-loaded permeabilized basilar arteries fromnonpregnant adult and term fetal (139-141 days) sheep.Ca2+ mass (nmol/mg dry weight) was similar in adult(1.60 ± 0.18) and fetal (1.71 ± 0.16) arteries in the poolsensitive to IP3 alone but was significantly lower foradult (0.11 ± 0.01) than for fetal (1.22 ± 0.11) arteriesin the pool sensitive to ryanodine alone. The pool sensitive to bothryanodine and IP3 was also smaller in adult (0.14 ± 0.01) than in fetal (0.85 ± 0.08) arteries. Because theCa2+ fraction in the ryanodine-IP3 pool wassmall in both adult (5 ± 1%) and fetal (7 ± 4%) arteries,the IP3 and ryanodine pools appear to be separate in thesearteries. However, the pool sensitive to neither IP3 norryanodine was 10-fold smaller in adult (0.87 ± 0.10) than infetal (8.78 ± 0.81) arteries, where it accounted for 72% oftotal intracellular membrane-bound Ca2+. Thus, duringbasilar artery maturation, intracellular Ca2+ mass plummetsin noncontractile pools, decreases modestly in ryanodine-sensitivepools, and remains constant in IP3-sensitive pools. Inaddition, age-related increases in IP3 efficacy must involve factors other than IP3 pool size alone. 相似文献