首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrastructural organization of centriolar complexes in 90 adult human aortic endothelial cells from uninvolved areas, fibrous and atheromatous plaques and 30 endothelial cells from human embryonic aorta were studied using serial sections. Primary cilia protruding from the abluminal cell surface were found on 28 of 30 endothelial cells from atheromatous plaques. Only five of 30 cells from either fibrous plaques or uninvolved areas developed primary cilia protruding to the lumen. Impaired primary cilia entirely immersed into the cytoplasm were found in embryonic endothelial cells. It was speculated that both the modes of formation and the functions of endothelial cilia in embryonic and adult aortas are different.  相似文献   

2.
Blood flowing in arteries generates shear forces at the surface of the vascular endothelium that control its anti-atherogenic properties. However, due to the architecture of the vascular tree, these shear forces are heterogeneous and atherosclerotic plaques develop preferentially in areas where shear is low or disturbed. Here we review our recent study showing that elevated shear forces stimulate endothelial autophagic flux and that inactivating the endothelial macroautophagy/autophagy pathway promotes a proinflammatory, prosenescent and proapoptotic cell phenotype despite the presence of atheroprotective shear forces. Specific deficiency in endothelial autophagy in a murine model of atherosclerosis stimulates the development of atherosclerotic lesions exclusively in areas of the vasculature that are normally resistant to atherosclerosis. Our findings demonstrate that adequate endothelial autophagic flux limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence and inflammation.  相似文献   

3.
Pulsatile fluid shear stress and circumferential stretch are responsible for the axial alignment of vascular endothelial cells and their actin stress fibers in vivo. We studied the effect of cyclic alterations in axial stretch independent of flow on endothelial cytoskeletal organization in intact arteries and determined if functional alterations accompanied morphologic alterations. Rat renal arteries were axially stretched (20%, 0.5 Hz) around their in vivo lengths, for up to 4h. Actin stress fibers were examined by immunofluorescent staining. We found that cyclic axial stretching of intact vessels under normal transmural pressure in the absence of shear stress induces within a few hours realignment of endothelial actin stress fibers toward the circumferential direction. Concomitant with this morphologic alteration, the sensitivity (log(EC(50))) to the endothelium-dependent vasodilator (acetylcholine) was significantly decreased in the stretched vessels (after stretching -5.15+/-0.79 and before stretching -6.71+/-0.78, resp.), while there was no difference in sodium nitroprusside (SNP) sensitivity. There was no difference in sensitivity to both acetylcholine and SNP in time control vessels. Similar to cultured cells, endothelial cells in intact vessels subjected to cyclic stretching reorganize their actin filaments almost perpendicular to the stretching direction. Accompanying this morphological alteration is a loss of endothelium-dependent vasodilation but not of smooth muscle responsiveness.  相似文献   

4.
Functional and morphological changes of blood vessels in cyclosporine A (CsA)-induced hypertension and nephrotoxicity were studied in spontaneously hypertensive rats (SHR). The role of the L-arginine-nitric oxide (NO) pathway and the importance of oxidative stress in CsA toxicity were also assessed. SHR (7-8 week old) on a high-sodium diet were treated with CsA (5 mg kg(-1) d(-1) s.c.) for 6 weeks. A proportion of the rats were treated concomitantly with the NO precursor L-arginine (1.7 g kg(-1)d(-1) p.o.). CsA elevated blood pressure and caused renal dysfunction and morphological nephrotoxicity. CsA also impaired mesenteric and renal arterial function and caused structural damage to intrarenal and extrarenal small arteries and arterioles. Medial atrophy of the mesenteric resistance vessels and decreased viability of smooth muscle cells of the thoracic aorta were observed. Renal and arterial damage was associated with the presence of inflammatory cells. CsA did not affect markers of the L-arginine-NO pathway (urinary cyclic GMP excretion or endothelial or inducible NO synthase expression in kidney, aorta or heart) or oxidative stress (urinary excretion of 8-isoprostaglandin F2alpha, plasma urate concentration or total radical trapping capacity). Concomitant L-arginine treatment did not affect CsA-induced changes in blood pressure or histological findings but tended to alleviate the arterial dysfunction. The renal and cardiovascular toxicity of CsA was associated with arterial dysfunction and morphological changes in small arteries and arterioles in SHR on a high-sodium diet. The findings did not support the role of oxidative stress or a defect in the L-arginine-NO pathway.  相似文献   

5.
Interstitial flow is an important regulator of various cell behaviors both in vitro and in vivo, yet the forces that fluid flow imposes on cells embedded in a 3D extracellular matrix (ECM), and the effects of matrix architecture on those forces, are not well understood. Here, we demonstrate how fiber alignment can affect the shear and pressure forces on the cell and ECM. Using computational fluid dynamics simulations, we show that while the solutions of the Brinkman equation accurately estimate the average fluid shear stress and the drag forces on a cell within a 3D fibrous medium, the distribution of shear stress on the cellular surface as well as the peak shear stresses remain intimately related to the pericellular fiber architecture and cannot be estimated using bulk-averaged properties. We demonstrate that perpendicular fiber alignment of the ECM yields lower shear stress and pressure forces on the cells and higher stresses on the ECM, leading to decreased permeability, while parallel fiber alignment leads to higher stresses on cells and increased permeability, as compared to a cubic lattice arrangement. The Spielman–Goren permeability relationships for fibrous media agreed well with CFD simulations of flow with explicitly considered fibers. These results suggest that the experimentally observed active remodeling of ECM fibers by fibroblasts under interstitial flow to a perpendicular alignment could serve to decrease the shear and drag forces on the cell.  相似文献   

6.
Myocardial infarction and stroke are two of the leading causes of death and primarily triggered by destabilization of atherosclerotic plaques. Fatty streaks are known to develop at sites in the arterial wall where shear stress is low. These fatty streaks can develop into more advanced plaques that are prone to rupture. Rupture leads to thrombus formation, which may subsequently result in a myocardial infarction or stroke. The relation between shear stress on the inner (endothelial) layer of the arterial wall in relation to plaque development has been studied extensively. However, a causal relation between adventitial shear forces and atherosclerosis development has never been considered.Arterial stiffening increases with age and may facilitate an increase in shear strain in the adventitial layer, an axial shear between artery and surrounding tissue. In the adventitial layer, a large number of inflammatory cells and perivascular structures are present that are subjected to shear strain. Cyclic strain applied to endothelial cells stimulates neovascularisation via different pathways. The conduit arteries in the human body (e.g. coronary and carotid artery) have their own nutrition supply: the vasa vasorum, which is located in the adventitial layer and sprouts into the intimal layer when atherosclerotic plaque develops. Increased plaque neovascularisation makes the plaques more prone to rupture. Therefore we hypothesize that increased shear strain facilitates the development of vulnerable plaques by stimulation of atherosclerotic plaque neovascularisation that sprouts from the adventitial vasa vasorum. Validation of this hypothesis paves the road to the use of adventitial shear strain (measured using a noninvasive ultrasound technique) as risk assessment in plaque.  相似文献   

7.
Vascular functions are regulated not only by chemical mediators, such as hormones, cytokines, and neurotransmitters, but by mechanical hemodynamic forces generated by blood flow and blood pressure. The mechanical force-mediated regulation is based on the ability of vascular cells, including endothelial cells and smooth muscle cells, to recognize fluid mechanical forces, i.e., the shear stress produced by flowing blood and the cyclic strain generated by blood pressure, and to transmit the signals into the cell interior, where they trigger cell responses that involve changes in cell morphology, cell function, and gene expression. Recent studies have revealed that immature cells, such as endothelial progenitor cells (EPCs) and embryonic stem (ES) cells, as well as adult vascular cells, respond to fluid mechanical forces. Shear stress and cyclic strain promote the proliferation and differentiation of EPCs and ES cells into vascular cells and enhance their ability to form new vessels. Even more recently, attempts have been made to apply fluid mechanical forces to EPCs and ES cells cultured on polymer tubes and develop tissue-engineered blood vessel grafts that have a structure and function similar to that of blood vessels in vivo. This review summarizes the current state of knowledge concerning the mechanobiological responses of stem/progenitor cells and its potential applications to tissue engineering.  相似文献   

8.
Biorheological views of endothelial cell responses to mechanical stimuli   总被引:2,自引:0,他引:2  
Sato M  Ohashi T 《Biorheology》2005,42(6):421-441
Vascular endothelial cells are located at the innermost layer of the blood vessel wall and are always exposed to three different mechanical forces: shear stress due to blood flow, hydrostatic pressure due to blood pressure and cyclic stretch due to vessel deformation. It is well known that endothelial cells respond to these mechanical forces and change their shapes, cytoskeletal structures and functions. In this review, we would like to mainly focus on the effects of shear stress and hydrostatic pressure on endothelial cell morphology. After applying fluid shear stress, cultured endothelial cells show marked elongation and orientation in the flow direction. In addition, thick stress fibers of actin filaments appear and align along the cell long axis. Thus, endothelial cell morphology is closely related to the cytoskeletal structure. Further, the dynamic course of the morphological changes is shown and the related events such as changes in mechanical stiffness and functions are also summarized. When endothelial cells were exposed to hydrostatic pressure, they exhibited a marked elongation and orientation in a random direction, together with development of centrally located, thick stress fibers. Pressured endothelial cells also exhibited a multilayered structure with less expression of VE-cadherin unlike under control conditions. Simultaneous loading of hydrostatic pressure and shear stress inhibited endothelial cell multilayering and induced elongation and orientation of endothelial cells with well-developed VE-cadherin in a monolayer, which suggests that for a better understanding of vascular endothelial cell responses one has to take into consideration the combination of the different mechanical forces such as exist under in vivo mechanical conditions.  相似文献   

9.
Decrease of arterial wall shear stress (WSS) is associated with higher probability of atherosclerotic plaque development in many disease conditions. End-stage renal diseases (ESRD) patients suffer from vascular disease frequently, but its nature differs from general population. This study was aimed at proving an association between common carotid wall shear stress and the presence of carotid bifurcation plaques in a group of ESRD patients. ESRD subjects, planned for the creation of a dialysis access and therapy were included. Wall shear rate (WSR) was used as a surrogate of WSS and was analyzed in the common carotid arteries by duplex ultrasonography. Intima media thickness (IMT) was measured at the same site. The presence/absence of carotid bifurcation plaques was recorded. The endothelial function was estimated by the levels of von Willebrand factor (vWf). 35 ESRD patients were included (19 females, 17 diabetics). Atherosclerotic plaque was present in 53 % of bifurcations. Wall shear rate was lower in arteries with plaques (349+/-148 vs. 506+/-206 s(-1), p=0.005) and was directly related to the height of IMT and inversely to the activity of vWf (r= -0.65, p=0.016). Lower wall shear rate in the common carotid arteries is linked to the endothelial dysfunction and to the presence of atherosclerotic plaques in carotid bifurcations in ESRD subjects. Faster arterial dilatation may facilitate this process in ESRD subjects.  相似文献   

10.
One of the most important pathological consequences of renal ischemia/reperfusion (I/R) is kidney malfunctioning. I/R leads to oxidative stress, which affects not only nephron cells but also cells of the vascular wall, especially endothelium, resulting in its damage. Assessment of endothelial damage, its role in pathological changes in organ functioning, and approaches to normalization of endothelial and renal functions are vital problems that need to be resolved. The goal of this study was to examine functional and morphological impairments occurring in the endothelium of renal vessels after I/R and to explore the possibility of alleviation of the severity of these changes using mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decylrhodamine 19 (SkQR1). Here we demonstrate that 40-min ischemia with 10-min reperfusion results in a profound change in the structure of endothelial cells mitochondria, accompanied by vasoconstriction of renal blood vessels, reduced renal blood flow, and increased number of endothelial cells circulating in the blood. Permeability of the kidney vascular wall increased 48 h after I/R. Injection of SkQR1 improves recovery of renal blood flow and reduces vascular resistance of the kidney in the first minutes of reperfusion; it also reduces the severity of renal insufficiency and normalizes permeability of renal endothelium 48 h after I/R. In in vitro experiments, SkQR1 provided protection of endothelial cells from death provoked by oxygen–glucose deprivation. On the other hand, an inhibitor of NO-synthases, L-nitroarginine, abolished the positive effects of SkQR1 on hemodynamics and protection from renal failure. Thus, dysfunction and death of endothelial cells play an important role in the development of reperfusion injury of renal tissues. Our results indicate that the major pathogenic factors in the endothelial damage are oxidative stress and mitochondrial damage within endothelial cells, while mitochondria-targeted antioxidants could be an effective tool for the protection of tissue from negative effects of ischemia.  相似文献   

11.
12.
Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces. In the present study, we examined the effect of hyperglycemia on mechanotranduction in bovine aortic endothelial cells (BAEC). After six days in high glucose media, we observed a decrease in heparan sulfate content coincident with a significant attenuation of the shear-induced hydraulic conductivity response, lower activation of eNOS after exposure to shear, and reduced cell alignment with shear stress. These studies are consistent with a diabetes-induced change to the glycocalyx altering endothelial response to shear stress that could affect the distribution of atherosclerotic plaques.  相似文献   

13.
Secomb TW  Hsu R  Pries AR 《Biorheology》2001,38(2-3):143-150
Responses of vascular endothelial cells to mechanical shear stresses resulting from blood flow are involved in regulation of blood flow, in structural adaptation of vessels, and in vascular disease. Interior surfaces of blood vessels are lined with a layer of bound or adsorbed macromolecules, known as the endothelial surface layer (ESL). In vivo investigations have shown that this layer has a width of order 1 microm, that it substantially impedes plasma flow, and that it excludes flowing red blood cells. Here, the effect of the ESL on transmission of shear stress to endothelial cells is examined using a theoretical model. The layer is assumed to consist of a matrix of molecular chains extending from the surface, held in tension by a slight increase in colloid osmotic pressure relative to that in free-flowing plasma. It is shown that, under physiological conditions, shear stress is transmitted to the endothelial surface almost entirely by the matrix, and fluid shear stresses on endothelial cell membranes are very small. Rapid fluctuations in shear stress are strongly attenuated by the layer. The ESL may therefore play an important role in sensing of shear stress by endothelial cells.  相似文献   

14.
Endothelial cells lining blood vessels are exposed to various hemodynamic forces associated with blood flow. These include fluid shear, the tangential force derived from the friction of blood flowing across the luminal cell surface, tensile stress due to deformation of the vessel wall by transvascular flow, and normal stress caused by the hydrodynamic pressure differential across the vessel wall. While it is well known that these fluid forces induce changes in endothelial morphology, cytoskeletal remodeling, and altered gene expression, the effect of flow on endothelial organization within the context of the tumor microenvironment is largely unknown. Using a previously established microfluidic tumor vascular model, the objective of this study was to investigate the effect of normal (4 dyn/cm2), low (1 dyn/cm2), and high (10 dyn/cm2) microvascular wall shear stress (WSS) on tumor-endothelial paracrine signaling associated with angiogenesis. It is hypothesized that high WSS will alter the endothelial phenotype such that vascular permeability and tumor-expressed angiogenic factors are reduced. Results demonstrate that endothelial permeability decreases as a function of increasing WSS, while co-culture with tumor cells increases permeability relative to mono-cultures. This response is likely due to shear stress-mediated endothelial cell alignment and tumor-VEGF-induced permeability. In addition, gene expression analysis revealed that high WSS (10 dyn/cm2) significantly down-regulates tumor-expressed MMP9, HIF1, VEGFA, ANG1, and ANG2, all of which are important factors implicated in tumor angiogenesis. This result was not observed in tumor mono-cultures or static conditioned media experiments, suggesting a flow-mediated paracrine signaling mechanism exists with surrounding tumor cells that elicits a change in expression of angiogenic factors. Findings from this work have significant implications regarding low blood velocities commonly seen in the tumor vasculature, suggesting high shear stress-regulation of angiogenic activity is lacking in many vessels, thereby driving tumor angiogenesis.  相似文献   

15.
6-month hypercholesterol diet made it possible to obtain an adequate model of atherosclerosis in inbred rats. The model was characterized by lipoidosis and fibrous plaques which occupied half of the area of the aorta and coronary arteries, as well as secondary fibrosis of other organs. During atherogenesis changes in endothelial and myocyte cells appear, accumulation of acid glycosaminoglycans takes place, lipoidosis and elastofibrosis progress up to collagenization and hyalinosis of the arterial wall. Fibro-myocyte plaques are transformed into fibro-atheromatous plaques. Upon drug therapy with vegetative saponins and furastonolic glycosides fibrous lesions did not regress, but delipidization and translocation of glycosaminoglycans were observed in 30% of the area of the affected arteries, and elastofibrosis and changes in endothelial and myocyte cells were decreased. Long-term therapy with vegetative drugs produced a regression of the experimental atherosclerosis.  相似文献   

16.
Mesenchymal stem cells (MSCs) have anti-inflammatory and immunosuppressive properties and may be useful in the therapy of diseases such as arteriosclerosis. MSCs have some ability to traffic into inflamed tissues, however to exploit this therapeutically their migratory mechanisms need to be elucidated. This study examines the interaction of murine MSCs (mMSCs) with, and their migration across, murine aortic endothelial cells (MAECs), and the effects of chemokines and shear stress. The interaction of mMSCs with MAECs was examined under physiological flow conditions. mMSCs showed lack of interaction with MAECs under continuous flow. However, when the flow was stopped (for 10 min) and then started, mMSCs adhered and crawled on the endothelial surface, extending fine microvillous processes (filopodia). They then spread extending pseudopodia in multiple directions. CXCL9 significantly enhanced the percentage of mMSCs adhering, crawling and spreading and shear forces markedly stimulated crawling and spreading. CXCL9, CXCL16, CCL20 and CCL25 significantly enhanced transendothelial migration across MAECs. The transmigrated mMSCs had down-regulated receptors CXCR3, CXCR6, CCR6 and CCR9. This study furthers the knowledge of MSC transendothelial migration and the effects of chemokines and shear stress which is of relevance to inflammatory diseases such as arteriosclerosis.  相似文献   

17.
Fluid shear stress and the vascular endothelium: for better and for worse   总被引:28,自引:0,他引:28  
As blood flows, the vascular wall is constantly subjected to physical forces, which regulate important physiological blood vessel responses, as well as being implicated in the development of arterial wall pathologies. Changes in blood flow, thus generating altered hemodynamic forces are responsible for acute vessel tone regulation, the development of blood vessel structure during embryogenesis and early growth, as well as chronic remodeling and generation of adult blood vessels. The complex interaction of biomechanical forces, and more specifically shear stress, derived by the flow of blood and the vascular endothelium raise many yet to be answered questions:How are mechanical forces transduced by endothelial cells into a biological response, and is there a "shear stress receptor"?Are "mechanical receptors" and the final signaling pathways they evoke similar to other stimulus-response transduction systems?How do vascular endothelial cells differ in their response to physiological or pathological shear stresses?Can shear stress receptors or shear stress responsive genes serve as novel targets for the design of diagnostic and therapeutic modalities for cardiovascular pathologies?The current review attempts to bring together recent findings on the in vivo and in vitro responses of the vascular endothelium to shear stress and to address some of the questions raised above.  相似文献   

18.
Correlation of endothelial vimentin content with hemodynamic parameters   总被引:3,自引:0,他引:3  
 In mammalian species, vimentin is the sole intermediate filament protein of endothelial cells lining the chambers of the heart and the inner surface of large blood vessels. Obvious quantitative differences in the vimentin-like immunoreactivity of endothelial cells observed in different vascular segments led us to undertake a systematic survey on the endothelial content of vimentin throughout the heart chambers, the vena cava, the pulmonary trunk, and the aorta of the pig. Immunostaining and immunoblotting showed that vimentin in endothelial cells of cardiovascular segments exposed to high shear stress and blood pressure (pulmonary trunk, aorta, left ventricle) is approximately 2- to -3-fold higher than in endothelial cells exposed to lower levels of hemodynamic stress (vena cava, left and right atria, right ventricle). Throughout the aorta, an approximately 1.5-fold increase in the vimentin contents was observed in a proximal to distal direction. The total endothelial amount of vimentin was determined to be 1.2% (inferior vena cava) and 2–3.5% (aorta) of total cellular protein. These data support the notion that the endothelial vimentin cytoskeleton can adapt to different hemodynamic loads, indicating that vimentin might help endothelial cells to withstand the mechanical forces exerted by blood flow and blood pressure. Accepted: 2 February 1998  相似文献   

19.
In the downstream regions of stenotic vessels, cells are subjected to a vortex motion under low shear forces, and atherosclerotic plaques tend to be localized. It has been reported that such a change of shear force on endothelial cells has an atherogenic effect by inducing the expression of adhesion molecules. However, the effect of vortex-induced mechanical stress on leukocytes has not been investigated. In this study, to elucidate whether vortex flow can affect the cell adhesive property, we have examined the effect of vortex-mediated mechanical stress on integrin activation in THP-1 cells, a monocytic cell line, and its signaling mechanisms. When cells are subjected to vortex flow at 400-2,000 rpm, integrin-dependent cell adhesion to vascular cell adhesion molecule-1 or fibronectin increased in a speed- and time-dependent manner. Next, to examine the role of Ca(2+) in this integrin activation, various pharmacological inhibitors involved in Ca(2+) signaling were tested to inhibit the cell adhesion. Pretreatment of cells with BAPTA-AM, thapsigargin +NiCl(2), or U-73122 (a phospholipase C inhibitor) inhibited cell adhesion induced by vortex-mediated mechanical stress. We also found that W7 (a calmodulin inhibitor) blocked the cell adhesion. However, pretreatment of cells with GdCl(3), NiCl(2), or ryanodine did not affect the cell adhesion. These data indicate that vortex-mediated mechanical stress induces integrin activation through calmodulin and inositol 1,4,5-trisphosphate-mediated Ca(2+) releases from intracellular Ca(2+) stores in THP-1 cells.  相似文献   

20.
We studied the distribution of the early atherosclerotic lesions in the curving sites of the human internal carotid arteries composed of the carotid siphon portion (part I) and carotid canal portion (part II). These early atherosclerotic lesions included a localized cloudy thickening with pallor, slight elevation, a non-fibrotic lesion and gray-white or yellowish-white, firm, elevated fibrous plaques. These lesions had the same pattern-distribution in each curving artery. Both were located in the distal regions from the middle of the inner curvature of parts I and II, where eddying fluid motions and directional change in the wall shear stress were considered to occur. In part I, there was a localized cloudy thickening in the younger subjects (average age: 22.8 years) rather than fibrous plaques (average age: 63.3 years). A positive correlation between the extent of the surface areas involved with fibrous plaques and the age of subjects was found in parts I and II. The extent of the surface areas involved with fibrous plaques was significantly greater in part I (26.9%) than in part II (7.85%). The radius of curvature was shorter in the former than in the latter. These results suggest that hemodynamic factors associated with flow in the curving sites of arteries may be important for the localization and progression of atherosclerotic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号