首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H-2b class I-restricted, TNP-specific CTL clones were obtained by limiting dilution cloning of either short term polyclonal CTL lines or spleen cells of TNP-immunized mice directly ex vivo. Sequence analyses of mRNA coding for TCR alpha- and beta-chains of 11 clones derived from CTL lines from individual C57BL/6 mice revealed that all of them expressed unique but clearly nonrandom receptor structures. Five alpha-chains (45%) employed V alpha 10 gene elements, and four of those (36%) were associated with J beta 2.6-expressing beta-chains. The alpha-chains from these four TCR, moreover, contained an acidic amino acid in position 93 of their N or J region-determined sequences. Clones isolated directly from spleen cells carried these types of receptors at lower frequency, 27% V alpha 10 and 19% J beta 2.6, indicating that bulk in vitro cultivation on Ag leads to selection for these particular receptors. However, even in TNP-specific CTL cloned directly ex vivo, V alpha 10 usage was increased about fivefold over that in Ag-independently activated T cells in H-2b mice (4 to 5%). The selection for V alpha 10/J beta 2.6-expressing cells was obtained repeatedly in other TNP-specific CTL lines from C57BL/6 mice but not in FITC-specific CTL from the same strain or in TNP-specific CTL lines from B10.BR (H-2k) or B10.D2 (H-2d) mice. We conclude from this (a) that the selection for V alpha 10/J beta 2.6+ T cells is driven by the complementarity of these receptors to a combination of TNP and MHC epitopes and (b) that predominant receptor structures reflect the existence of a surprisingly limited number of "T cell-relevant" hapten determinants on the surface of covalently TNP-modified cells.  相似文献   

2.
The phenomenon that strong syngeneic T-cell-mediated cytotoxicity is observed if killer, stimulator, and target cells share H-2 histocompatibility antigens is called H-2 restriction. Here a syngeneic model system making use of hapten-coupled stimulator and target cells is used to explore whether H-2 restriction is absolute or not. Using TNP-coupled spleen or tumor cells as stimulator or target cells in syngeneic and allogeneic situations, it is shown that neither the induction step nor the effector step of TNP-dependent killing is H-2 restricted. By varying the experimental assay conditions more or less H-2-restricted, TNP-dependent killing can be observed. For instance, suboptimal coupling of TNP to targets may result in H-2-restricted killing. Similarly, the use of spleen cell targets as opposed to spleen blast cells or tumor cells may result in H-2-restricted lysis. In contrast optimal coupling of TNP to sensitive target cells and coupling of TNP to cells with certain H-2 haplotypes may lead to significant TNP-dependent killing which is not H-2 restricted. Since hapten-coupled cells lacking H-2 are neither stimulators nor targets these results suggest that the T-cell receptor recognizes TNP-modified H-2 antigens simply as nonself-H-2. Thus hapten coupling of syngeneic cells appears to lead to a histocompatibility antigen change similar to the situation in an allogeneic cytotoxic reaction. Experiments are presented which support this view showing that TNP-coupled and uncoupled syngeneic or allogeneic stimulator and target cells cross-react. For instance allogeneic sensitization may lead to killing on TNP-coupled targets syngeneic to the effector cells and TNP-coupled stimulator cells syngeneic to the effector cells may induce killing on uncoupled syngeneic targets. TNP-dependent cytotoxicity can therefore be envisaged as a kind of allogeneic reactivity due to modification of H-2 antigens by the TNP coupling. This conclusion may have bearing on other model systems in which syngeneic killing appears to be H-2 restricted. In support of this possibility it is shown that allogeneic sensitization may lead to priming of memory cells able to respond to minor histocompatibility antigens.  相似文献   

3.
The autologous mixed lymphocyte reaction (AMLR) in mice measures the proliferative response of T cells to determinants on syngeneic non-T spleen cells. Normally, cytotoxic T lymphocytes (CTL) are not generated in this reaction. However, the addition of trinitrophenyl-modified mitomycin C-treated syngeneic T cells (TNP-Tm) to the AMLR results in the generation of TNP-specific CTL but does not alter the proliferative response. Significant cytotoxic activity is not detectable against TNP in association with Ia unless TNP is present on cells bearing those determinants. Thus, if unselected spleen cells are TNP-modified and used as stimulators in the AMLR, the proliferative response is enhanced and CTL are generated that recognize TNP in association with K, D, and I region-encoded determinants. The CTL generated in the AMLR are H-2 restricted and dependent on the presence of adherent cells in the sensitization cultures. The experiments presented here suggest that the AMLR can provide the help necessary for generating cytotoxic T cells in vitro.  相似文献   

4.
Spleen cells from C3H/He mice immunized in vivo to trinitrophenyl (TNP)-self were sensitized in vitro to TNP-self. These spleen cells displayed strong lysis on TNP-modified H-2D end-matched (Kd-Dk) targets as well as enhanced cytotoxicity against H-2 matched (Kk-Dk) or H-2K end-matched (Kk-Dd) target cells. Cold target-blocking studies showed that the lysis of TNP-Kd-Dk targets could be blocked by the addition of TNP-modified Kk-Dk, Kk-Dd Kk-Db, or Kd-Dk, but not by TNP-modified Kd-Dd, Kb-Db and Kq-Kq spleen cells. These results demonstrate that the lysis of TNP-Kd-Dk targets is not due to cross-reactive clones against TNP-Kd-Dd, Kb-Db or Kq-Dq antigens. Inhibition of the TNP-Kd-Dk target lysis by TNP-Kk-matched (Kk-Dd or Kk-Db) as well as TNP-Dk-matched (Kd-Dk) blockers also reveals that this target is lysed by clones directed against shared antigens between Kk-TNP and Dk-TNP, indicating that no cytotoxic response restricted for Dk-TNP only could be detected even after in vivo priming.  相似文献   

5.
There are conflicting results as to whether the response of athymic nude mice to TNP-modified self determinants is or is not H-2 restricted. We cultured spleen cells from 29 individual RNC (H-2k) nude mice with TNP-modified self determinants and tested the cultures for their ability to lyse TNP-modified self (RNC-TNP) and TNP-modified allogeneic (BALB/c-TNP) target cells. Each mouse was stimulated by two different protocols: either by the addition of TNP-modified irradiated nu/+ spleen cells or by TNP modification of the nude responder cells without addition of other cells. All mice could lyse RNC-TNP targets and about one-half could also lyse BALB/c-TNP targets, i.e., there was a 50:50 division between restricted and unrestricted responses. The magnitude of the response against RNC-TNP and whether the response was restricted were both independent of the method of stimulation. We conclude that H-2 restriction in these mice is imposed by an as yet unidentified environmental influence that can vary from one nude mouse to the next. The influence appears to act through negative selection because the modified self response is, if anything, higher in mice showing an unrestricted response.  相似文献   

6.
Cytolytic T lymphocytes (CTL) specific for trinitrophenyl (TNP)-altered self antigens can be generated in vivo through the simultaneous injection of TNP-modified syngeneic spleen cells and H-2-compatible, minor histocompatibility locus (Mls)-disparate auxiliary spleen cells into the footpads of mice. The latter stimulates host helper cells to produce differentiative and proliferative signals required for the generation of CTL. Advent of this protocol allowed investigation of the initiation of two different cell-mediated immune responses, delayed-type hypersensitivity (DTH) and the generation of CTL, in the same experimental animal. Mice presensitized for CTL were able to develop DTH as well as normal controls. However, when mice were first sensitized for DTH, they were thereafter incapable of generating CTL. This effect was hapten specific, relatively long lasting, and preventable by treating mice with cyclophosphamide before sensitizing for DTH. Adoptive transfer of lymphoid cells from DTH-immune mice conferred DTH reactivity upon naive recipients but not a suppressed CTL response. Therefore, cells mediating DTH were not responsible for suppression of CTL. The mechanism for suppression has been discussed from the viewpoint of the suppressor-T-cell circuits that are known to be generated when animals are sensitized for DTH and which are susceptible to treatment with cyclophosphamide.  相似文献   

7.
We used purified class I antigen incorporated into liposomes to examine the response of secondary cytolytic T lymphocytes (CTL) to chemically modified self. By generating the secondary response in the presence of T cell helper factor, the level of CTL response was limited by CTL recognition of added antigen rather than by helper cell generation of lymphokines. We found a strong secondary response against chemically modified self when spleen cells from trinitrophenyl (TNP)-primed C3H/HeJ mice were stimulated with a) TNP-modified liposomes containing H-2Kk, b) liposomes containing H-2Kk purified from TNP-modified RDM-4 (H-2k) cells, or c) liposomes containing the limited trypsin proteolysis product of H-2Kk that had been directly modified with TNP. In contrast, we were not able to generate a significant CTL response with unmodified H-2Kk incorporated into vesicles along with TNP-modified membrane components lacking H-2Kk. These results suggest that TNP-modified H-2Kk is a major antigenic site recognized by CTL from C3H/HeJ mice after priming against TNP-modified self.  相似文献   

8.
A trinitrophenyl (TNP)-specific suppressor hybridoma was obtained by fusing hapten-binding spleen cells (SC) of BALB/c mice 1 week after intravenous (iv) injection of TNP-modified syngeneic lymphocytes with the AKR lymphoma BW5147. The suppressive activity of supernatants from one clone (TNP-44) was compared with that of in vivo-induced TNP-specific suppressor cells. Both the TNP-specific suppressor cells (TsTNP) and the TNP-44 were hapten binding and hapten specific. They suppressed the functional activity of TNP-haptenized T as well as B cells. TNP-44 supernatant also inhibited the proliferation of TNP-modified cells. Using native target cells, both TNP-44 supernatant and the in vivo-induced suppressor cells suppressed the anti-TNP B-cell response to TNP-bound T-dependent soluble or cellular antigens, but not to TNP-lipopolysaccharide (LPS). Furthermore, the function of TNP-specific helper T cells (THTNP) was impaired in the presence of TSTNP or supernatant from TNP-44. From these observations it was concluded that both the TSTNP and a TNP-specific factor derived from a suppressor hybridoma function via an antigen bridge at the TH or at the TH-dependent B-cell subset.  相似文献   

9.
The regulation of the in vitro generation of cytotoxic T lymphocytes (CTLs) directed against hapten-modified syngeneic cells has been investigated. The results indicate that acute intravenous pretreatment with water-soluble hapten, trinitrobenzene sulfonic acid (TNBS), can either positively or negatively affect the in vitro generation of trinitrophenyl (TNP)-specific CTLs. In general, mice bearing the H-2d haplotype are most likely to develop a reduced in vitro response pattern following a single acute in vivo TNBS treatment, wheras mice bearing the H-2k or H-2b haplotypes display either unchanged or augmented in vitro response patterns. We have shown that, in addition to the influences of H-2 genes, non-H-2 genes can also influence the in vitro hapten-specific CTL response following intravenous pretreatment with water-soluble hapten. Further, in two (H-2k X H-2d) F1 combinations between an H-2k strain displaying an unchanged in vitro response pattern following acute in vivo TNBS treatment and an H-2d strain displaying a reduced in vitro response pattern following similar treatment, it was observed that a single in vivo TNBS pretreatment did not induce the unresponsive state when F1-TNP stimulator cells were used. These results suggest that the mechanisms responsible for the reduced in vitro response pattern are not dominant within the F1 environment. However, when TNP-modified parental stimulators are used, a split-response pattern is observed in cells from TNBS-treated F1 mice which reflect the response patterns of the respective parents. These latter results again emphasize the influence of gene loci on the in vitro response patterns following acute TNBS treatment. In contrast to the significant influence of H-2 and non-H-2 genes on the in vitro TNP-specific response following acute in vivo TNBS treatment, these genes do not appear to significantly influence the in vitro TNP-specific response pattern following chronic TNBS treatment. Chronic TNBS treatment renders all strains tested specifically unresponsive.  相似文献   

10.
Cross-reactivity of TNP-immune, virus-immune, and alloreactive murine cytotoxic thymus-derived (Tc) cells was investigated at the level of target cell lysis. Alloreactive Tc cells cross-reacted on TNP-modified and unmodified third-party targets and on syngeneic TNP-modified targets but did not cross-react on syngeneic virus-infected targets. TNP-immune Tc cells showed marked cross-reactivity on certain allogeneic targets modified by TNP (loss of H-2 restriction) and also on certain unmodified allogeneic targets but did not cross-lyse virus-infected syngeneic targets. Targets treated with TNP-Sendai virus were not lysed by TNP-immune Tc cells, but Tc cells stimulated by cells treated with TNP-Sendai virus lysed such targets readily. These results are consistent with the view that Tc-cell recognition of foreign H-2 antigens and TNP-modified self-H-2 antigens are mechanistically similar (possibly via one receptor), whereas recognition of viral plus H-2 antigens is different (possibly via two receptors).Virus-immune Tc cells ubiquitously exhibited strong cross-reactivity on syngeneic TNP-modified targets using pox-, arena-, alpha-, myxo-, and paramyxoviruses for Tc-cell induction. The lysis of virus-infected targets by virus-immune Tc cells could be inhibited by cold TNP-modified competitors, thus establishing that some individual virus-immune Tc cells could recognize both types of target cells. This genuine cross-reactivity at the effector level was not observed at the level of induction of secondary responses, since the cross-reactive subset of virus-immune memory Tc cells could not be activated by TNP-modified stimulator cells but could be activated by virus-infected stimulators. These results implied that requirements for stimulation of precursor Tc cells are sometimes different from antigenic requirements for recognition and lysis of effector Tc cells.  相似文献   

11.
It was tested whether the cytotoxic T-lymphocyte precursor (CLP) repertoire in normal mice is biased toward recognizing foreign antigen in association with self H-2 as opposed to allogeneic H-2. The frequencies of CLPs in normal mice (H-2b,k,d) specific for TNP-modified syngeneic and TNP-modified allogeneic cells have been compared by limiting dilution analysis. Normal spleen cells were cultured at a limiting dilution with TNP-modified (TNP-self) or TNP-modified allogeneic (TNP-allo) stimulator cells. Cultures were split into four aliquots and assayed against TNP-self, TNP-allo, unmodified syngeneic, and unmodified allogeneic Concanavalin A blast targets and classified for cytotoxic activity directed against TNP-self, TNP-allo, and allo H-2 determinants. In disagreement with our expectations from the literature, the frequencies of CLPs in H-2b and H-2d responder cells recognizing TNP-modified H-2k were higher than the frequencies of CLPs recognizing TNP-self. There was no clear preference for TNP-self in the case of H-2b responder and H-2d allogeneic cells, nor vice versa. Only in the case of H-2k responder cells was there a distinct preference for TNP-self. The significance of a considerable number of TNP-specific, allo H-2-restricted CLPs in normal lymphocytes is discussed.  相似文献   

12.
The present study investigates the effect of trinitrophenyl- (TNP) modified H-2Kk (TNP-Kk) antigens on the generation of anti-TNP-Dk restricted cytotoxic T lymphocyte (CTL) responses. C3H.OH mice were primed to TNP-self by skin-painting with trinitrochlorobenzene, and spleen cells from these primed mice were subsequently stimulated in vitro with TNP-self. The effector cells generated exhibited appreciable lysis of TNP-modified C3H.OH blast target cells. Cold target inhibition studies demonstrated the generation of two effector cell populations: one that recognizes TNP in association with unique Dk self determinants, and one that recognizes TNP in association with self determinants shared between TNP-Kk and TNP-Dk. This was in contrast to primed C3H/He spleen cells, which did not generate CTL that recognized TNP in association with unique Dk self determinants. When spleen cells from (C3H/He x C3H.OH)F1 mice primed to TNP were stimulated in vitro with TNP-C3H.OH cells, unique Dk self determinants were recognized in association with TNP. However, in vitro stimulation of the same F1 responding cells with TNP-C3H/He or TNP-F1 cells failed to elicit CTL that utilized these Dk-unique self determinants. The findings of this study demonstrate that unique or shared H-2Dk determinants can be differentially utilized by CTL populations, depending on the H-2 alleles expressed by the stimulator cells.  相似文献   

13.
Murine cytotoxic T lymphocytes (CTL) reactive to TNP-conjugated syngeneic target cells do lyse to a moderate but significant extent TNP-conjugated, I region compatible but H-2K or H-2D region incompatible target cells. Antibody inhibition experiments and "cold inhibition" experiments indicate that some CTL clones recognize TNP-conjugated targets in association with syngeneic I region determinants independently of H-2K or H-2D gene products. The data suggest that besides TNP-conjugated H-2K or H-2D gene products, in principle, also TNP-conjugated I region determinants do stimulate TNP-specific CTL precursor cells and act as target antigens of TNP-specific CTL.  相似文献   

14.
Mice were primed subcutaneously with trinitrophenyl (TNP)-modified syngeneic spleen cells. Seven days later, spleen cells from these in vivo primed mice, or spleen cells from naive mice, were co-cultured with TNP-modified syngeneic cells. Spleen cells from the in vivo primed mice demonstrated augmented cytolytic T lymphocyte (CTL) activity. The spleens of these in vivo primed mice contained a population of radioresistant, antigen-specific, helper T cells. Specifically, spleen cells from these mice, after x-irradiation, were able to augment the in vitro CTL response of normal spleen cells to TNP-modified syngeneic cells.  相似文献   

15.
Several TNP-specific, H-2Kb-restricted mouse CTL clones were identified which specifically lysed target cells in the presence of tryptic digests of TNP-modified BSA. Glutaraldehyde fixation of cells revealed that the tryptic fragments did not require further cellular processing. Chromatographic fractionation of digested TNP-BSA identified the peptide TNP-BSA222-231, containing a TNP-modified lysine at BSA position 227, as the antigenic entity. The corresponding synthetic peptide was immunologically cross-reactive with the digest. All clones reactive with TNP-BSA222-231 cross-reacted with a similar peptide from mouse serum albumin (TNP-MSA126-135), favoring the assumption that TNP-BSA222-231 represents an artificial determinant, cross-reacting with some as yet unidentified, TNP-modified, Kb-associated self-peptides. Some of our clones also cross-reacted with tryptic digests of TNP-OVA or TNP-keyhole limpet hemocyanin. We interpret these findings to indicate that 1) a significant proportion of hapten (TNP) determinants for T cells are anchored to MHC via peptides; and 2) the amino acid sequence of these peptides may only partly define the specificity of the T cell-relevant hapten epitope, implying a particularly repetitive nature of these determinants. The production of T cell-antigenic hapten-peptide conjugates will hopefully open new roads to study immune responses to environmental allergens.  相似文献   

16.
In antigen-specific cytotoxic T-lymphocyte (CTL) responses H-2 class I mutations usually result in a decreased recognition of the antigen in association with the mutant molecule by CTL from the strain of origin. However, the influence of class I mutations on the magnitude and specificity of CTL responses in the mutants has been studied in only a few instances, in which usually a partial or complete loss of responsiveness was found. We now report that class I mutants extensively use gained (novel) CTL restriction sites, generated by the mutations in the CTL response against the hapten trinitrophenyl (TNP), demonstrated both at the population level and in limiting dilution. TNP-specific CTL clones, restricted by mutant-specific determinants, were detected in all mutants. The percentages mutant-specific CTL clones in limiting dilution experiments were 43, 40, 35, and 13 in the Kb mutants bm1, bm8, bm3 and bm5, respectively, and 35 in the Db mutant bm 14. It is concluded that H-2 class I mutations led to changes in the TNP-specific CTL repertoire resulting in gain of CTLs uniquely restricted to the mutant molecule.  相似文献   

17.
The parenteral injection of ligand-coupled syngeneic spleen cells has profound effects on immune responsiveness. In this regard, it was examined whether the primed in vitro trinitrophenol (TNP)-specific cytotoxic T-lymphocyte (CTL) responses observed in splenic T-cell populations from mice injected intravenously (iv) with syngeneic TNP-modified spleen cells (TNP-SC) are related to the efferent-acting suppressor-T-cell (Ts) activity observed in splenocytes from iv primed mice. Treatment of mice with cyclophosphamide, adult thymectomy, or monoclonal anti-I-J antiserum prior to the iv injection of TNP-SC was found to eliminate the ability of splenic Ts from these mice to suppress the passive transfer of delayed-type hypersensitivity (DTH) mediated by trinitrochlorobenzene-immune T cells. In contrast, spleen cells from these pretreated mice showed no impairment in the development of augmented TNP-specific CTL responses upon in vitro restimulation with TNP-SC. Separation of the two activities was also achieved in a kinetic analysis. It is concluded that specific enhancement of CTL responsiveness induced by the iv injection of TNP-SC is related to the expansion of a population prelytic Lyt 2+ CTL effector cells which does not appear to contain efferent-acting Lyt 2+ Ts active in suppressing DTH expression.  相似文献   

18.
We have examined the underlying mechanisms accounting for the enhanced in vitro TNP-specific cytotoxic T-lymphocyte (CTL) response following the parenteral injection of syngeneic hapten-modified lymphoid cells. Augmented CTL activity noted following parenteral injection (iv vs sc) of 2,4,6-trinitrophenol-modified syngeneic spleen cells (TNP-SC) is most apparent when limiting numbers of TNP-modified stimulator cells are used in the in vitro sensitization phase. Enhanced CTL responses seen following sc and iv priming is due to distinct mechanisms. Spleen and lymph node (LN) cells from sc primed mice were found to contain significant levels of radioresistant helper activity upon coculture with either viable normal spleen cells in bulk culture or with thymocytes as the source of precursor CTLs in a limiting dilution assay. The helper activity was found to be mediated by a Lyt 1+2- T cells. In addition, Lyt 2-depleted spleen and LN cells from sc primed BALB/c mice could restore the ability of tolerant spleen cells from 2,4,6-trinitrobenzenesulfonic acid (TNBS)-injected BALB/c mice to generate TNP-specific CTLs. Conversely, Lyt 2-depleted spleen and LN cells from iv primed mice provided no measurable helper activity either in bulk culture or in the limiting dilution assay and did not restore the ability of TNBS-tolerant BALB/c spleen cells to generate TNP-specific CTLs. CTL priming via the iv route was found to be completely antigen specific as iv injection of either 2,4-dinitrophenol (DNP)- or fluorescein isothiocyanatel (FITC)-modified cells caused no enhanced CTL activity. Priming via the sc route exhibited a unique specificity pattern as it was shown that sc injection of both TNP-SC and DNP-SC, but not FITC-SC, resulted in enhanced TNP-specific CTL responses. CTL T-helper (Th)-cell induction via the sc route was correlated with (1) the presence of H-2 I region determinants on the inducer cells as the sc injection of TNP-modified erythrocytes led to no enhanced CTL responses or CTL Th activity (while iv injection of TNP-erythrocytes did lead to enhanced CTL responses without detectable helper activity) and (2) the detection of both hapten-specific T-cell proliferation and Interleukin 2 (IL-2) production upon restimulation in culture. We conclude that the sc injection of TNP-SC leads preferentially to an increase of specific Lyt 1+ helper activity, while iv injection leads preferentially to an apparent expansion of Lyt 2+ prelytic effector CTLs.  相似文献   

19.
In this paper we examined the effect of anti-TNP antibody on guinea pig T cell proliferation in response to TNP-modified macrophages in vitro. The addition of anti-TNP to TNP-modified macrophages immediately after conjugation inhibited their ability to stimulate TNP-specific T cell proliferation. This inhibition appeared to be specific for the TNP response since anti-TNP had no effect on the ability of TNP-modified macrophages pulsed with either PPD or TNP-Ova to stimulate efficient PPD or Ova T cell responses. On the other hand, anti-TNP had no effect on the TNP-specific response to TNP-modified macrophages that had been cultured overnight before addition to primed T cells or to macrophages which had been pulsed with TNP-Ova. We also demonstrated that the same TNP-specific T cell subpopulation responds to both freshly TNP-modified macrophages and overnight cultured TNP-modified macrophages. These results suggest that the relevant TNP-determinants recognized by T cells are not exposed on the macrophage surface and raise the possibility that macrophages must process membrane-conjugated TNP to create the immunogen recognized by T cells.  相似文献   

20.
Hapten-specific T cells have been shown to recognize haptenated peptides with high avidity and, in some instances, with promiscuous MHC restriction. In this study, the impact of Ag density on MHC restriction of a CTL response specific to the trinitrophenyl (TNP) hapten was investigated. In this study, we demonstrate a novel recognition mechanism used by TNP-specific CD8(+) CTL in the presence of high Ag doses. Although low levels of TNP epitopes on target cells allowed for HLA-A1-restricted CTL activity only, entirely MHC-independent target cell recognition became operative at high TNP loading. In both cases, recognition was mediated by the TCR. This MHC-independent recognition is target cell type restricted and critically involves in our model direct recognition of the ectonucleotidase family surface molecule CD39 by the CTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号