首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interactions between human DNA polymerase beta and the template-primer, as well as gapped DNA substrates, have been studied using quantitative fluorescence titration and analytical ultracentrifugation techniques. In solution, human pol beta binds template-primer DNA substrates with a stoichiometry much higher than predicted on the basis of the crystallographic structure of the polymerase-DNA complex. The obtained stoichiometries can be understood in the context of the polymerase affinity for the dsDNA and the two ssDNA binding modes, the (pol beta)(16) and (pol beta)(5) binding modes, which differ by the number of nucleotide residues occluded by the protein in the complex. The analysis of polymerase binding to different template-primer substrates has been performed using the statistical thermodynamic model which accounts for the existence of different ssDNA binding modes and has allowed us to extract intrinsic spectroscopic and binding parameters. The data reveal that the small 8 kDa domain of the enzyme can engage the dsDNA in interactions, downstream from the primer, in both (pol beta)(16) and (pol beta)(5) binding modes. The affinity, as well as the stoichiometry of human pol beta binding to the gapped DNAs is not affected by the decreasing size of the ssDNA gap, indicating that the enzyme recognizes the ssDNA gaps of different sizes with very similar efficiency. On the basis of the obtained results we propose a plausible model for the gapped DNA recognition by human pol beta. The enzyme binds the ss/dsDNA junction of the gap, using its 31 kDa domain, with slight preference over the dsDNA. Binding only to the junction, but not to the dsDNA, induces an allosteric conformational transition of the enzyme and the entire enzyme-DNA complex which results in binding of the 8 kDa domain with the dsDNA. This, in turn, leads to the significant amplification of the enzyme affinity for the gap over the surrounding dsDNA, independent of the gap size. The presence of the 5'-terminal phosphate, downstream from the primer, has little effect on the affinity, but profoundly affects the ssDNA conformation in the complex. The significance of these results for the mechanistic model of the functioning of human pol beta is discussed.  相似文献   

2.
Interactions between rat polymerase beta (pol beta) and the template-primer, as well as gapped DNAs, were studied using the quantitative fluorescence titration technique. Stoichiometries of rat pol beta complexes with DNA substrates are much higher than stoichiometries predicted by the structures of co-crystals. The data can be understood in the context of the two single-stranded (ss)DNA-binding modes of the enzyme, the (pol beta)(16) and (pol beta)(5) binding modes, which differ by the number of nucleotides occluded by the protein. The 8-kDa domain of the enzyme engages the double-stranded (ds)DNA downstream from the primer, while the 31-kDa domain has similar affinity for the ss-ds DNA junction and the dsDNA. The affinity of rat pol beta for the gapped DNA is not affected by the size of the gap. The results indicate a plausible model for recognition of the gapped DNA by rat pol beta. The enzyme binds the ss-ds DNA junction of the gap using the 31-kDa domain. This binding induces an allosteric transition, resulting in the association of the 8-kDa domain with the dsDNA, leading to an amplification of the affinity for the gap. The 5' terminal phosphate, downstream from the primer, has little effect on the affinity, but affects the ssDNA conformation of the gap.  相似文献   

3.
Energetics and specificity of interactions between the Escherichia coli PriA helicase and the gapped DNAs have been studied, using the quantitative fluorescence titration and analytical ultracentrifugation methods. The gap complex has a surprisingly low minimum total site size, corresponding to ∼7 nucleotides of the single-stranded DNA (ssDNA), as compared with the site size of ∼20 nucleotides of the enzyme-ssDNA complex. The dramatic difference in stoichiometries indicates that the enzyme predominantly engages the strong DNA-binding subsite in interactions with the gap and assumes a very different orientation in the gap complex, as compared with the complex with the ssDNA. The helicase binds the ssDNA gaps with 4–5 nucleotides with the highest affinity, which is ∼3 and ∼2 orders of magnitude larger than the affinities for the ssDNA and double-stranded DNA, respectively. In the gap complex, the protein does not engage in cooperative interactions with the enzyme predominantly associated with the surrounding dsDNA. Binding of nucleoside triphosphate to the strong and weak nucleotide-binding sites of the helicase eliminates the selectivity of the enzyme for the size of the gap, whereas saturation of both sites with ADP leads to amplified affinity for the ssDNA gap containing 5 nucleotides and engagement of an additional protein area in interactions with the nucleic acid.  相似文献   

4.
Analyses of the interactions of rat polymerase beta (rat pol beta) with a double-stranded DNA have been performed using the quantitative fluorescence titration and fluorescence energy transfer techniques. The obtained results show that rat pol beta binds to dsDNA oligomers with the site-size of the enzyme-dsDNA complex n = 5 +/- 1 base pairs. The small site-size of the complex is a consequence of engagement of only the 8-kDa domain in intrinsic interactions with the dsDNA. This conclusion is directly supported by the fluorescence energy transfer between the single tryptophan residue on the 31-kDa domain and fluorescence acceptor located on the DNA. The dsDNA oligomer is bound at a distance of at least 55 A from the tryptophan, excluding the 31-kDa domain from any closed contact with the DNA. Moreover, in the complex with the dsDNA, the enzyme is bound in "open" conformational state. The intrinsic interactions are accompanied by a net release of about four to five ions. The net ion release is dominated by cations as a result of the exclusive engagement of the 8-kDa domain in interactions. Magnesium affects the net ion release through direct binding of Mg(2+) cations to the protein. Surprisingly, binding of rat pol beta to the dsDNA is characterized by strong positive cooperative interactions, a very different behavior from that previously observed for pol beta complexes with the ssDNA and gapped DNAs. Contrary to intrinsic affinities, cooperative interactions are accompanied by a net uptake of about three to five ions. Anions have a large contribution to the net ion uptake, indicating that cooperative interactions characterize protein-protein interactions. The significance of these results for the pol beta functioning in damaged-DNA recognition processes is discussed.  相似文献   

5.
Kinetics of human polymerase beta binding to gapped DNA substrates having single stranded (ss) DNA gaps with five or two nucleotide residues in the ssDNA gap has been examined, using the fluorescence stopped-flow technique. The mechanism of the recognition does not depend on the length of the ssDNA gap. Formation of the enzyme complex with both DNA substrates occurs by a minimum three-step reaction, with the bimolecular step followed by two isomerization steps. The results indicate that the polymerase initiates the association with gapped DNA substrates through the DNA-binding subsite located on the 8-kDa domain of the enzyme. This first association step is independent of the length of the ssDNA gap and is characterized by similar rate constants for both examined DNA substrates. The subsequent, first-order transition occurs at the rate of approximately 600-1200 s(-1). This is the major docking step accompanied by favorable free energy changes in which the 31-kDa domain engages in interactions with the DNA. The 5'-terminal PO(4)(-) group downstream from the primer is not a specific recognition element of the gap. However, the phosphate group affects the enzyme orientation in the complex with the DNA, particularly, for the substrate with a longer gap.  相似文献   

6.
Interactions of the polymerase X of African swine fever virus with the double-stranded DNA (dsDNA) have been studied with fluorescent dsDNA oligomers, using quantitative fluorescence titrations, analytical ultracentrifugation, and fluorescence energy transfer techniques. Studies with unmodified dsDNAs were performed, using competition titration method. ASV pol X binds the dsDNA with a site-size of n=10(+/-2) base-pairs, which is significantly shorter than the total site-size of 16(+/-2) nucleotides of the enzyme-ssDNA complex. The small site size indicates that the enzyme binds the dsDNA exclusively using the proper DNA-binding subsite. Fluorescence energy transfer studies between the tryptophan residue W92 and the acceptor, located at the 5' or 3' end of the dsDNA, suggest strongly that the proper DNA-binding subsite is located on the non-catalytic C-terminal domain. Moreover, intrinsic interactions with the dsDNA 10-mer or 20-mer are accompanied by the same net number of ions released, independent of the length of the DNA, indicating the same length of the DNA engaged in the complex. The dsDNA intrinsic affinity is about two orders of magnitude higher than the ssDNA affinity, indicating that the proper DNA-binding subsite is, in fact, the specific dsDNA-binding site. Surprisingly, ASFV pol X binds the dsDNA with significant positive cooperativity, which results from protein-protein interactions. Cooperative interactions are accompanied by the net ion release, with anions participating in the ion-exchange process. The significance of these results for ASFV pol X activity in the recognition of damaged DNA is discussed.  相似文献   

7.
The role of the 5′ terminal phosphate group downstream from the primer and magnesium cations in the energetics and dynamics of the gapped DNA recognition by rat polymerase β have been examined, using the fluorescence titration and stopped-flow techniques. The analyses have been performed with the entire series of gapped DNA substrates differing in the size of the ssDNA gap. The 5′ terminal phosphate group and magnesium cations exert antagonistic effect on enzyme binding to gapped DNA that depends on the length of the ssDNA gap. The PO 4 group amplifies the differences between the substrates with different ssDNA gaps, while in the presence of magnesium, affinities and structural changes induced in the DNA are very similar among examined DNA substrates. Both, the phosphate group and Mg+2 differ dramatically in affecting the thermodynamic response of the gapped DNA-rat pol β system to the salt concentration. The data indicate that these distinct effects result from affecting the structure of the DNA, in the case of the phosphate group, and from direct magnesium binding to the protein. The mechanism of rat enzyme binding depends on the length of the ssDNA gap and the presence of the 5′ terminal phosphate group. Complex formation with DNAs having three, four, and five residues in the gap occurs by a minimum three-step sequential mechanism. Depending on the presence of the 5′ terminal phosphate group and/or magnesium, binding of the enzyme to a DNA containing two residues in the ssDNA gap is described by the same three-step or by a simpler two-step mechanism. With the DNA containing only one residue in the gap, binding is always described by only a two-step mechanism. The PO 4 group and magnesium cations have opposite effects on internal stability of the complexes with different length of the ssDNA gap. While the PO 4 group increases the stability of internal intermediates with the increasing length of the gap, Mg+2 decreases the stability of the intermediates with longer ssDNA gap. As a result, the combined favorable orientation effect of the phosphate group and the unfavorable Mg+2 effect lead to the optimal docking of the ssDNA gaps with three and four residues by the enzyme. This work was supported by NIH Grant GM-58565 (to W. B.)  相似文献   

8.
9.
Interactions between the isolated 8-kDa domain of the rat DNA polymerase beta and DNA have been studied, using the quantitative fluorescence titration technique. The obtained results show that the number of nucleotide residues occluded in the native 8-kDa domain complex with the ssDNA (the site size) is strongly affected by Mg2+ cations. In the absence of Mg2+, the domain occludes 13 +/- 0.7 nucleotide residues, while in the presence of Mg2+ the site size decreases to 9 +/- 0.6 nucleotides. The high affinity of the magnesium cation binding, as well as the dramatic changes in the monovalent salt effect on the protein-ssDNA interactions in the presence of Mg2+, indicates that the site size decrease results from the Mg2+ binding to the domain. The site size of the isolated domain-ssDNA complex is significantly larger than the 5 +/- 2 site size determined for the (pol beta)5 binding mode formed by an intact polymerase, indicating that the intact enzyme, but not the isolated domain, has the ability to use only part of the domain DNA-binding site in its interactions with the nucleic acid. Salt effect on the intrinsic interactions of the domain with the ssDNA indicates that a net release of m approximately 5 ions accompanies the complex formation. Independence of the number of ions released upon the type of anion in solution strongly suggests that the domain forms as many as seven ionic contacts with the ssDNA. Experiments with different ssDNA oligomers show that the affinity decreases gradually with the decreasing number of nucleotide residues in the oligomer. The data indicate a continuous, energetically homogeneous structure of the DNA-binding site of the domain, with crucial, nonspecific contacts between the protein and the DNA evenly distributed over the entire binding site. The DNA-binding site shows little base specificity. Moreover, the domain has an intrinsic affinity and site size of its complex with the dsDNA conformation, similar to the affinity and site size with the ssDNA. The significance of these results for the mechanistic role of the 8-kDa domain in the functioning of rat pol beta is discussed.  相似文献   

10.
Jezewska MJ  Galletto R  Bujalowski W 《Biochemistry》2003,42(40):11864-11878
The tertiary structure of template-primer and gapped DNA substrates in the complex with rat polymerase beta (pol beta) has been examined using the fluorescence energy transfer method based on the multiple donor-acceptor approach. In these studies, we used DNA substrates labeled at the 5' end of the template strand and the 5' end of the primer with the fluorescent donor and/or acceptor. Measurements of the enzyme complex with the template-primer DNA substrate having a ten nucleotide long ssDNA extension indicate that the distance between the 5' end of the template strand and the 5' end of the primer decreases by approximately 9.8 A as compared to the free nucleic acid. Analogous experiments with the template-primer substrate, having the ssDNA extension with five nucleotide residues, show approximately 6.6 A distance decrease. Such large distance decreases indicate that the DNA is significantly bent in the binding site. Analysis of the data indicates that the bending occurs between the third and the fourth nucleotide of the ssDNA extension. The entire template strand is at the bend angle Theta(TP) = 85 +/- 7 degrees with respect to the dsDNA part of the DNA molecule. In the polymerase complex with the gapped DNA, the distance between the 5' ends of the DNA and the bend angle are 66 +/- 2.2 A and 65 +/- 6 degrees, respectively. These values are very similar to the same distance and bend angle of the gap complex in the crystal structure of the co-complex. The presence of the 5'-terminal PO(4)(-) group downstream from the primer does not affect the tertiary conformation of the gapped DNA, indicating that the effect of the phosphate group is localized at the ssDNA gap.  相似文献   

11.
Escherichia coli RecF protein binds, but does not hydrolyze, ATP. To determine the role that ATP binding to RecF plays in RecF protein-mediated DNA binding, we have determined the interaction between RecF protein and single-stranded (ss)DNA, double-stranded (ds)DNA, and dsDNA containing ssDNA regions (gapped [g]DNA) either alone or in various combinations both in the presence and in the absence of adenosine (gamma-thio) triphosphate, gamma-S-ATP, a nonhydrolyzable ATP analog. Protein-DNA complexes were analyzed by electrophoresis on agarose gels and visualized by autoradiography. The type of protein-DNA complexes formed in the presence of gamma-S-ATP was different with each of the DNA substrates and from those formed in the absence of gamma-S-ATP. Competition experiments with various combinations of DNA substrates indicated that RecF protein preferentially bound gDNA in the presence of gamma-S-ATP, and the order of preference of binding was gDNA > dsDNA > ssDNA. Since gDNA has both ds- and ssDNA components, we suggest that the role for ATP in RecF protein-DNA interactions in vivo is to confer specificity of binding to dsDNA-ssDNA junctions, which is necessary for catalyzing DNA repair and recombination.  相似文献   

12.
Single-stranded DNA-binding proteins (SSBs) bind single-stranded DNA (ssDNA) and participate in all genetic processes involving ssDNA, such as replication, recombination, and repair. Here we applied atomic force microscopy to directly image SSB-DNA complexes under various conditions. We used the hybrid DNA construct methodology in which the ssDNA segment is conjugated to the DNA duplex. The duplex part of the construct plays the role of a marker, allowing unambiguous identification of specific and nonspecific SSB-DNA complexes. We designed hybrid DNA substrates with 5'- and 3'-ssDNA termini to clarify the role of ssDNA polarity on SSB loading. The hybrid substrates, in which two duplexes are connected with ssDNA, were the models for gapped DNA substrates. We demonstrated that Escherichia coli SSB binds to ssDNA ends and internal ssDNA regions with the same efficiency. However, the specific recognition by ssDNA requires the presence of Mg(2+) cations or a high ionic strength. In the absence of Mg(2+) cations and under low-salt conditions, the protein is capable of binding DNA duplexes. In addition, the number of interprotein interactions increases, resulting in the formation of clusters on double-stranded DNA. This finding suggests that the protein adopts different conformations depending on ionic strength, and specific recognition of ssDNA by SSB requires a high ionic strength or the presence of Mg(2+) cations.  相似文献   

13.
DNA polymerase X (pol X) from African swine fever virus (ASFV) is the smallest naturally ocurring DNA-directed DNA polymerase (174 amino acid residues) described so far. Previous biochemical analysis has shown that ASFV pol X is a highly distributive, monomeric enzyme, lacking a proofreading 3'-5' exonuclease. Also, ASFV pol X binds intermediates of the single-nucleotide base excision repair (BER) process, and is able to efficiently repair single-nucleotide gapped DNA. In this work, we perform an extensive kinetic analysis of single correct and incorrect nucleotide insertions by ASFV pol X using different DNA substrates: (i) a primer/template DNA; (ii) a 1nt gapped DNA; (iii) a 5'-phosphorylated 1nt gapped DNA. The results obtained indicate that ASFV pol X exhibits a general preference for insertion of purine deoxynucleotides, especially dGTP opposite template C. Moreover, ASFV pol X shows higher catalytic efficiencies when filling in gapped substrates, which are increased when a phosphate group is present at the 5'-margin of the gap. Interestingly, ASFV pol X misinserts nucleotides with frequencies from 10(-4) to 10(-5), and the insertion fidelity varies depending on the substrate, being more faithful on a phosphorylated 1nt gapped substrate. We have analyzed the capacity of ASFV pol X to act on intermediates of BER repair. Although no lyase activity could be detected on preincised 5'-deoxyribose phosphate termini, ASFV pol X has lyase activity on unincised abasic sites. Altogether, the results support a role for ASFV pol X in reparative BER of damaged viral DNA during ASFV infection.  相似文献   

14.
Kinetics of rat polymerase beta (pol beta) binding to the single-stranded DNA (ssDNA) in the (pol beta)(16) and (pol beta)(5) binding modes has been examined, using the fluorescence stopped-flow technique. Binding of the enzyme to the ssDNA containing fluorescein is characterized by a strong increase of the DNA fluorescence, which provides an excellent signal to quantitatively study the complex mechanism of the ssDNA recognition process. The experiments were performed with a 20-mer ssDNA, which can engage the enzyme in the (pol beta)(16) binding mode, i.e. it encompasses the entire, total DNA-binding site of rat pol beta, and with a 10-mer which binds the enzyme exclusively in the (pol beta)(5) binding mode where only the 8 kDa domain of the enzyme is engaged in interactions with the DNA. The data indicate that the formation of the (pol beta)(16) binding mode occurs by a minimum three-step mechanism with the bimolecular binding step followed by two isomerizations: [formula-see text] A similar mechanism is observed in the formation of the (pol beta)(5) binding mode, although at low salt concentrations there is an additional, slow step in the reaction. The data analysis was performed using the matrix projection operator technique, a powerful method to address stopped-flow kinetics, particularly, amplitudes. The binding modes differ in the free energy changes of the partial reactions and ion effects on transitions between intermediates that reflect different participation of the two structural domains. The formation of both binding modes is initiated by the fast association with the ssDNA through the 8 kDa domain, followed by transitions induced by interactions at the interface of the 8 kDa domain and the DNA. In the (pol beta)(16) binding mode, the subsequent intermediates are stabilized by the DNA binding to the DNA-binding subsite on the 31 kDa domain. The data indicate that interactions of the ssDNA-binding subsite of the 8 kDa domain with the ssDNA, controlled by the ion binding, induce conformational transitions of the formed complexes in both binding modes. The sequential nature of the determined mechanisms indicates a lack of kinetically significant conformational equilibrium of rat pol beta, prior to ssDNA binding.  相似文献   

15.
Interaction of dimeric intercalating dyes with single-stranded DNA.   总被引:5,自引:2,他引:3       下载免费PDF全文
The unsymmetrical cyanine dye thiazole orange homodimer (TOTO) binds to single-stranded DNA (ssDNA, M13mp18 ssDNA) to form a fluorescent complex that is stable under the standard conditions of electrophoresis. The stability of this complex is indistinguishable from that of the corresponding complex of TOTO with double-stranded DNA (dsDNA). To examine if TOTO exhibits any binding preference for dsDNA or ssDNA, transfer of TOTO from pre-labeled complexes to excess unlabeled DNA was assayed by gel electrophoresis. Transfer of TOTO from M13 ssDNA to unlabeled dsDNA proceeds to the same extent as that from M13 dsDNA to unlabeled dsDNA. A substantial amount of the dye is retained by both the M13 ssDNA and M13 dsDNA even when the competing dsDNA is present at a 600-fold weight excess; for both dsDNA and ssDNA, the pre-labeled complex retains approximately one TOTO per 30 bp (dsDNA) or bases (ssDNA). Rapid transfer of dye from both dsDNA and ssDNA complexes is seen at Na+ concentrations > 50 mM. Interestingly, at higher Na+ or Mg2+ concentrations, the M13 ssDNA-TOTO complex appears to be more stable to intrinsic dissociation (dissociation in the absence of competing DNA) than the complex between TOTO and M13 dsDNA. Similar results were obtained with the structurally unrelated dye ethidium homodimer. The dsDNA- and ssDNA-TOTO complexes were further examined by absorption, fluorescence and circular dichroism spectroscopy. The surprising conclusion is that polycationic dyes, such as TOTO and EthD, capable of bis-intercalation, interact with dsDNA and ssDNA with very similar high affinity.  相似文献   

16.
The Escherichia coli PriA helicase complex with the double-stranded DNA (dsDNA), the location of the strong DNA-binding subsite, and the effect of the nucleotide cofactors, bound to the strong and weak nucleotide-binding site of the enzyme on the dsDNA affinity, have been analyzed using the fluorescence titration, analytical ultracentrifugation, and photo-cross-linking techniques. The total site size of the PriA-dsDNA complex is only 5 ± 1 bp, that is, dramatically lower than 20 ± 3 nucleotides occluded in the enzyme-single-stranded DNA (ssDNA) complex. The helicase associates with the dsDNA using its strong ssDNA-binding subsite in an orientation very different from the complex with the ssDNA. The strong DNA-binding subsite of the enzyme is located on the helicase domain of the PriA protein. The dsDNA intrinsic affinity is considerably higher than the ssDNA affinity and the binding process is accompanied by a significant positive cooperativity. Association of cofactors with strong and weak nucleotide-binding sites of the protein profoundly affects the intrinsic affinity and the cooperativity, without affecting the stoichiometry. ATP analog binding to either site diminishes the intrinsic affinity but preserves the cooperativity. ADP binding to the strong site leads to a dramatic increase of the cooperativity and only slightly affects the affinity, while saturation of both sites with ADP strongly increases the affinity and eliminates the cooperativity. Thus, the coordinated action of both nucleotide-binding sites on the PriA-dsDNA interactions depends on the structure of the phosphate group. The significance of these results for the enzyme activities in recognizing primosome assembly sites or the ssDNA gaps is discussed.  相似文献   

17.
Functional interactions of the Escherichia coli PriA helicase 181N-terminal domain with the DNA and nucleotide cofactors have been quantitatively examined. The isolated 181N-terminal domain forms a stable dimer in solution, most probably reflecting the involvement of the domain in specific cooperative interactions of the intact PriA protein--double-stranded DNA (dsDNA) complex. Only one monomer of the domain dimer binds the DNA; i.e., the dimer has one effective DNA-binding site. Although the total site size of the dimer--single-stranded DNA (ssDNA) complex is ~13 nucleotides, the DNA-binding subsite engages in direct interactions with approximately five nucleotides. A small number of interacting nucleotides indicates that the DNA-binding subsites of the PriA helicase, i.e., the strong subsite on the helicase domain and the weak subsite on the N-terminal domain, are spatially separated in the intact enzyme. Contrary to current views, the subsite has an only slight preference for the 3'-end OH group of the ssDNA and lacks any significant base specificity, although it has a significant dsDNA affinity. Unlike the intact helicase, the DNA-binding subsite of the isolated domain is in an open conformation, indicating the presence of the direct helicase domain--N-terminal domain interactions. The discovery that the 181N-terminal domain possesses a nucleotide-binding site places the allosteric, weak nucleotide-binding site of the intact PriA on the N-terminal domain. The specific effect of ADP on the domain DNA-binding subsite indicates that in the intact helicase, the bound ADP not only opens the DNA-binding subsite but also increases its intrinsic DNA affinity.  相似文献   

18.
The bacteriophage T4 uvsX gene codes for a DNA-binding protein that is important for genetic recombination in T4-infected cells. This protein is a DNA-dependent ATPase that resembles the Escherichia coli recA protein in many of its properties. We have examined the binding of purified uvsX protein to single-stranded DNA (ssDNA) and to double-stranded DNA (dsDNA) using electron microscopy to visualize the complexes that are formed and double label analysis to measure their protein content. We find that the uvsX protein binds cooperatively to dsDNA, forming filaments 14 nm in diameter with an apparently helical axial repeat of 12 nm. Each repeat contains about 42 base pairs and 9-12 uvsX protein monomers. In solutions containing Mg2+, the uvsX protein also binds cooperatively to ssDNA. The filaments that result are 14 nm in diameter, show a 12-nm axial repeat, and they are nearly identical in appearance to the filaments that contain dsDNA. In the filaments formed along ssDNA, each axial repeat contains about 49 DNA bases and 9-12 uvsX monomers. Both the filaments formed on the ssDNA and dsDNA show a strong tendency to align side-by-side. T4 gene 32 protein also binds cooperatively to ssDNA and interacts both physically and functionally with uvsX protein. However, when gene 32 and uvsX proteins were added to ssDNA together, no interaction between the two proteins was detected.  相似文献   

19.
RecA protein features two distinct DNA-binding sites. During DNA strand exchange, the primary site binds to single-stranded DNA (ssDNA), forming the helical RecA nucleoprotein filament. The weaker secondary site binds double-stranded DNA (dsDNA) during the homology search process. Here we demonstrate that this site has a second important function. It binds the ssDNA strand that is displaced from homologous duplex DNA during DNA strand exchange, stabilizing the initial heteroduplex DNA product. Although the high affinity of the secondary site for ssDNA is essential for DNA strand exchange, it renders DNA strand exchange sensitive to an excess of ssDNA which competes with dsDNA for binding. We further demonstrate that single-stranded DNA-binding protein can sequester ssDNA, preventing its binding to the secondary site and thereby assisting at two levels: it averts the inhibition caused by an excess of ssDNA and prevents the reversal of DNA strand exchange by removing the displaced strand from the secondary site.  相似文献   

20.
Oakley GG  Patrick SM  Yao J  Carty MP  Turchi JJ  Dixon K 《Biochemistry》2003,42(11):3255-3264
The heterotrimeric DNA-binding protein, replication protein A (RPA), consists of 70-, 34-, and 14-kDa subunits and is involved in maintaining genomic stability by playing key roles in DNA replication, repair, and recombination. RPA participates in these processes through its interaction with other proteins and its strong affinity for single-stranded DNA (ssDNA). RPA-p34 is phosphorylated in a cell-cycle-dependent fashion primarily at Ser-29 and Ser-23, which are consensus sites for Cdc2 cyclin-dependent kinase. By systematically examining RPA-p34 phosphorylation throughout the cell cycle, we have found there are distinct phosphorylated forms of RPA-p34 in different cell-cycle stages. We have isolated and purified a unique phosphorylated form of RPA that is specifically associated with the mitotic phase of the cell cycle. The mitotic form of RPA (m-hRPA) shows no difference in ssDNA binding activity as compared with recombinant RPA (r-hRPA), yet binds less efficiently to double-stranded DNA (dsDNA). These data suggest that mitotic phosphorylation of RPA-p34 inhibits the destabilization of dsDNA by RPA complex, thereby decreasing the binding affinity for dsDNA. The m-hRPA also exhibits altered interactions with certain DNA replication and repair proteins. Using highly purified proteins, m-hRPA exhibited decreased binding to ATM, DNA pol alpha, and DNA-PK as compared to unphosphorylated recombinant RPA (r-hRPA). Dephosphorylation of m-hRPA was able to restore the interaction with each of these proteins. Interestingly, the interaction of RPA with XPA was not altered by RPA phosphorylation. These data suggest that phosphorylation of RPA-p34 plays an important role in regulating RPA functions in DNA metabolism by altering specific protein-protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号