首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mammalian alveoli, complex architectural and cellular units with dimensions that are linked to the organism's O2 consumption (VO2), are thought to be destroyed only by disease and not to spontaneously regenerate. Calorie restriction of adult mammals lowers VO2, and ad libitum refeeding returns VO2 to pre-calorie-restriction values. We took advantage of these relationships and tested the hypothesis in adult mice that calorie restriction (two-thirds reduction for 2 wk) followed by ad libitum refeeding (3 wk) would cause alveolar destruction and regeneration, respectively. Calorie restriction diminished alveolar number 55% and alveolar surface area 25%. Refeeding fully reversed these changes. Neither manipulation altered lung volume. Within 72 h, calorie restriction increased alveolar wall cell apoptosis and diminished lung DNA (approximately 20%). By 72 h of refeeding, alveolar wall cell replication increased and lung DNA rose to amounts in mice that were never calorie restricted. We conclude that adult mice have endogenous programs to destroy and regenerate alveoli, thereby raising the danger of inappropriate activation but the possibility of therapeutic induction, if similar programs exist in humans.  相似文献   

2.
3.
4.
Treatment of pre-term newborns with exogenous surfactant preparation is a well established part of the therapy for respiratory distress syndrome of the newborns (RDS). Since the introduction of surfactant into clinical practice in 1980, hundreds of studies have been published describing beneficial effects of such treatment. There is only limited number of morphological publications reporting adverse effects of surfactant administration. The aim of the present study is to describe morphological changes in the lung after surfactant administration to healthy newborn rats. Two types of surfactant were used: Exosurf (Glaxo Wellcome, England) and Survanta (Abbott Laboratories, USA). Surfactant preparation were given intratracheally in single dose (bolus) (100 mg of lipids per kg b.w.). Animals from control group received 0.9% saline in equivalent volume. Lung specimens were taken 15, 20, 25 and 30 minutes after drug administration and evaluated by light and electron microscopy. There was no damage in lungs from the control group. Tissue specimens from the Exosurf group revealed severe pathological changes: foci of atelectasis, frank edema in the parenchyma, focal disruption of air-blood barrier, hemorrhages in many alveoli, surfactant particles in many alveolar capillaries, and strongly activated alveolar macrophages. In this group changes appeared as early as 15 min after surfactant administration and intensity of lung injury increased with time. Also, Survanta administration caused damage to the lung tissue. However, the changes were less intense and appeared later (20-25 minutes after Survanta treatment). In conclusion, the presented morphological findings proved that exogenous surfactant administration to healthy rat newborns caused lung damage. Comparing two different surfactant preparation, Exosurf and Survanta, it was shown that the former one produced stronger and faster damage to lung alveoli than the latter one.  相似文献   

5.
6.
The birth canal provides mammals with a primary maternal inoculum, which develops into distinctive body site-specific microbial communities post-natally. We characterized the distal gut microbiota from birth to weaning in mice. One-day-old mice had colonic microbiota that resembled maternal vaginal communities, but at days 3 and 9 of age there was a substantial loss of intestinal bacterial diversity and dominance of Lactobacillus. By weaning (21 days), diverse intestinal bacteria had established, including strict anaerobes. Our results are consistent with vertical transmission of maternal microbiota and demonstrate a nonlinear ecological succession involving an early drop in bacterial diversity and shift in dominance from Streptococcus to Lactobacillus, followed by an increase in diversity of anaerobes, after the introduction of solid food. Mammalian newborns are born highly susceptible to colonization, and lactation may control microbiome assembly during early development.  相似文献   

7.
8.
9.
10.
A technically easy, noninvasive means of delivering molecules to alveoli, which act selectively or specifically in the lung, would be experimentally and therapeutically useful. As proof of principle, we took advantage of the spreading ability of pulmonary surface active material (InfaSurf), mixed it with elastase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) small inhibitory RNA (siRNA), or all-trans retinoic acid (ATRA), and instilled microliter amounts of the mixture into the nose of lightly anesthetized mice. One instillation of elastase caused diffuse alveolar destruction (emphysema) demonstrating widespread alveolar delivery. A single nasal instillation of GAPDH siRNA, compared with scrambled GAPDH siRNA, lowered GAPDH protein in lung, heart, and kidney by approximately 50-70% 1 and 7 days later. To test the possibility of lung-specific delivery of a potentially therapeutic drug, we administered ATRA and monitored its effect on expression of cellular retinol binding protein (CRBP)-1 mRNA, whose translation product is a key molecule in retinoid metabolism. Given intranasally, ATRA elevated CRBP-1 mRNA 4.3-fold in a lung-specific manner. The same dose and dose schedule of ATRA given intraperitoneally increased CRBP-1 mRNA only approximately 1.8-fold in lung; intraperitoneally administered ATRA elevated expression of CRBP-1 mRNA 1.7-fold or more in brain cortex, cerebellum, and testes, thereby increasing the risk of untoward effects. This simple noninvasive technique allows regulation of specific proteins in the lung and lung-specific delivery of reagents of experimental and potentially therapeutic importance.  相似文献   

11.
12.
Regulation of epithelial stem cells in tooth regeneration   总被引:2,自引:0,他引:2  
Teeth form as epithelial appendages and the mechanisms regulating their development share similarities with other organs such as hairs, glands, and gut. However, the regenerative potential of mammalian teeth is generally limited. Stem cells have been identified in the epithelium of continuously growing incisors of mice. We have identified a network of signalling molecules that regulates the proliferation and differentiation of these stem cells, and that thereby influences the incisors' growth and enamel formation. The signals, including FGFs, BMPs, and Activin, mediate interactions between the mesenchymal and epithelial cells within the stem cell niche and form an integrated network. Follistatin antagonizes the functions of BMPs and Activin, and is a key regulator of the asymmetry of the incisor structure. The evolutionary variation in the growth capacity of teeth and the extent of enamel deposition may have resulted from fine-tuning of this signal network. In addition, subtle variations in this or in related regulatory networks may explain the different regenerative capacities of various organs and animal species.  相似文献   

13.

Background

COPD is characterised by loss of alveolar elastic fibers and by lack of effective repair. Elastic fibers are assembled at cell surfaces by elastin binding protein (EBP), a molecular chaperone whose function can be reversibility inhibited by chondroitin sulphate of matrix proteoglycans such as versican. This study aimed to determine if alveoli of patients with mild to moderate COPD contained increased amounts of versican and a corresponding decrease in EBP, and if these changes were correlated with decreases in elastin and FEV1.

Methods

Lung samples were obtained from 26 control (FEV1 ≥ 80% predicted, FEV1/VC >0.7) and 17 COPD patients (FEV1 ≥ 40% – <80% predicted, FEV1/VC ≤ 0.7) who had undergone a lobectomy for bronchial carcinoma. Samples were processed for histological and immuno-staining. Volume fractions (Vv) of elastin in alveolar walls and alveolar rims were determined by point counting, and versican and EBP assessed by grading of staining intensities.

Results

Elastin Vv was positively correlated with FEV1 for both the alveolar walls (r = 0.66, p < 0.001) and rims (r = 0.41, p < 0.01). Versican was negatively correlated with FEV1 in both regions (r = 0.30 and 0.32 respectively, p < 0.05), with the highest staining intensities found in patients with the lowest values for FEV1. Conversely, staining intensities for EBP in alveolar walls and rims and were positively correlated with FEV1 (r = 0.43 and 0.46, p < 0.01).

Conclusion

Patients with mild to moderate COPD show progressively increased immuno-staining for versican and correspondingly decreased immuno-staining for EBP, with decreasing values of FEV1. These findings may explain the lack of repair of elastic fibers in the lungs of patients with moderate COPD. Removal of versican may offer a strategy for effective repair.  相似文献   

14.
15.
Mammary gland homeostasis and the lactation-to-involution switch are regulated by serotonin (5-hydroxytryptamine (5-HT)). Mammary epithelial tight junctions are physiological targets of 5-HT, and their disruption marks an early stage of mammary gland involution. In these studies, we have identified signal transduction mechanism employed by 5-HT during regulation of mammary gland transepithelial resistance. Transepithelial electrical resistance and tight junction protein architecture were studied in cultures of MCF10A human mammary epithelial cells. Serotonin had biphasic effects on mammary epithelial resistance. At lower concentrations and earlier time points, 5-HT potentiated epithelial transmembrane resistance, whereas at higher concentrations and later time points, 5-HT decreased transepithelial electrical resistance and disrupted tight junctions. Both the early and delayed actions of 5-HT were mediated by the 5-HT7 receptor through activation of G(s)/cAMP. 5-HT induced the activities of both protein kinase A and p38 mitogen-activated protein kinase. Inhibition of p38 mitogen-activated protein kinase abrogated 5-HT-induced disruption of mammary epithelial tight junctions (the delayed effect). In contrast, inhibition of protein kinase A prevented the increased epithelial resistance in response to 5-HT (the transient effect). These studies imply an integrated set of mechanisms whereby transient, modest activation of 5-HT7 promotes tight junction integrity, and sustained 5-HT7 activation drives involution by disrupting tight junctions.  相似文献   

16.
Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID) and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.  相似文献   

17.
Bone marrow-derived stromal cells (BMSCs) protect against acute lung injury (ALI). To determine the role of BMSC mitochondria in this protection, we airway-instilled mice first with lipopolysaccharide (LPS) and then with either mouse BMSCs (mBMSCs) or human BMSCs (hBMSCs). Live optical studies revealed that the mBMSCs formed connexin 43 (Cx43)-containing gap junctional channels (GJCs) with the alveolar epithelia in these mice, releasing mitochondria-containing microvesicles that the epithelia engulfed. The presence of BMSC-derived mitochondria in the epithelia was evident optically, as well as by the presence of human mitochondrial DNA in mouse lungs instilled with hBMSCs. The mitochondrial transfer resulted in increased alveolar ATP concentrations. LPS-induced ALI, as indicated by alveolar leukocytosis and protein leak, inhibition of surfactant secretion and high mortality, was markedly abrogated by the instillation of wild-type mBMSCs but not of mutant, GJC-incompetent mBMSCs or mBMSCs with dysfunctional mitochondria. This is the first evidence, to our knowledge, that BMSCs protect against ALI by restituting alveolar bioenergetics through Cx43-dependent alveolar attachment and mitochondrial transfer.  相似文献   

18.
19.
The investigation of lung dynamics on alveolar scale is crucial for the understanding and treatment of lung diseases, such as acute lung injury and ventilator induced lung injury, and to promote the development of protective ventilation strategies. One approach to this is the establishment of numerical simulations of lung tissue mechanics where detailed knowledge about three‐dimensional alveolar structure changes during the ventilation cycle is required. We suggest four‐dimensional optical coherence tomography (OCT) imaging as a promising modality for visualizing the structural dynamics of single alveoli in subpleural lung tissue with high temporal resolution using a mouse model. A high‐speed OCT setup based on Fourier domain mode locked laser technology facilitated the acquisition of alveolar structures without noticeable motion artifacts at a rate of 17 three‐dimensional stacks per ventilation cycle. The four‐dimensional information, acquired in one single ventilation cycle, allowed calculating the volume‐pressure curve and the alveolar compliance for single alveoli. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Kumar PA  Hu Y  Yamamoto Y  Hoe NB  Wei TS  Mu D  Sun Y  Joo LS  Dagher R  Zielonka EM  Wang de Y  Lim B  Chow VT  Crum CP  Xian W  McKeon F 《Cell》2011,147(3):525-538
The extent of lung regeneration following catastrophic damage and the potential role of adult stem cells in such a process remains obscure. Sublethal infection of mice with an H1N1 influenza virus related to that of the 1918 pandemic triggers massive airway damage followed by apparent regeneration. We show here that p63-expressing stem cells in the bronchiolar epithelium undergo rapid proliferation after infection and radiate to interbronchiolar regions of alveolar ablation. Once there, these cells assemble into discrete, Krt5+ pods and initiate expression of markers typical of alveoli. Gene expression profiles of these pods suggest that they are intermediates in the reconstitution of the alveolar-capillary network eradicated by viral infection. The dynamics of this p63-expressing stem cell in lung regeneration mirrors our parallel finding that defined pedigrees of human distal airway stem cells assemble alveoli-like structures in vitro and suggests new therapeutic avenues to acute and chronic airway disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号