首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of ACTH and calcium on cyclic AMP production and steroid output by the zona glomerulosa (the capsular fraction) from the rat adrenal cortex have been studied. Although high concentrations of extracellular calcium potentiated the stimulatory action of ACTH on cyclic AMP and aldosterone output, tetracaine or verapamil inhibited aldosterone output but not cyclic AMP production during ACTH-stimulation. Lanthanum reduced both aldosterone and cyclic AMP accumulation induced by ACTH. These results suggest that an extracellular calcium would be essential in stimulating the capsular steroidogenesis without involvement of the cyclic AMP system.  相似文献   

2.
The role of the cyclic AMP-protein kinase system in mediating the steroidogenic effect of ACTH, prostaglandin E1 and dibutyryl cyclic AMP, induced similar stimulations of protein kinase activity, cyclic AMP was studied using human adrenal cells isolated from normal and adrenocortical secreting tumors. At high concentrations of ACTH, complete activation of protein kinase of normal adrenal cells was observed within 3 min, at the time when cyclic AMP production was slightly increased and there was still no stimulation of steroidogenesis. At supramaximal concentrations, ACTH, PGE1 and dibutyryl cyclic AMP and cortisol productions in adrenal cells isolated from normal and from one adrenocortical tumor. In one tumor in which the adenylate cyclase activity was insensitive to ACTH, the hormone was unable to stimulate protein kinase or steroidogenesis, but the cells responded to both PGE1 and dibutyryl cyclic AMP. In another tumor in which the adenylate cyclase was insensitive to PGE1, this compound also did not increase protein kinase activity or steroidogenesis, but both parameters were stimulated by ACTH and dibutyryl cyclic AMP. After incubation of normal adrenal cells with increasing concentrations of ACTH (0.01-100 nM) marked differences were found between cyclic AMP formation and cortisol production. However at the lowest concentrations of ACTH exerting an effect on steroid production a close linked correlation was found between protein kinase activation and cortisol production, but half-maximal and maximal cortisol production occurs at lower concentration of ACTH than was necessary to induce the same stimulation of protein kinase. Similar findings were found after incubating the adrenal cells with dibutyryl cyclic AMP (0.01-10 mM). The results implicate an important role of the cyclic AMP-protein kinase system during activation of adrenal cell steroidogenesis by low concentrations of steroidogenic compounds.  相似文献   

3.
The ability of three analogs of ACTH1-24 ([Gln5, Phe9] ACTH1-24, [Gln5, Ala9[Acth1-24, and [Gln5, Lys8, Phe9[ ACTH1-24) embodying tryptophan substitutions to activate the adenylate cyclase system of a bovine adrenal plasma membrane preparation was compared to the effect of the analogs on adenosine 3':5'-monophosphate (cyclic AMP) accumulation and steroidogenesis in viable bovine adrenocortical cells. The results were not comparable. Whereas the analogs antagonized the ACTH1-24-activated membrane cyclase they stimulated cyclic AMP accumulation as well as steroid production of the cells. None of the analogs inhibited steroidogenesis of ACTH1-24-stimulated cells, but two of them, at very high dose levels, inhibited cyclic AMP production. The ability of the analogs to stimulate steroidogenesis of the adrenal cells half-maximally decreased in the order tryptophan greater than phenylalanine greater than alanine, indicating that the aromaticity of the indole ring of tryptophan is necessary for maximal interaction between hormone and receptor. Both the absolute and relative steroidogenic potencies were the same for several analogs when assayed with rat adrenal cells. Although only a small fraction of the cell's potential to produce cyclic AMP was necessary to induce maximum steroid production, the relative activities of a series of analogs were the same for steroidogenesis as for cyclic AMP accumulation. Furthermore, the concentration of cyclic AMP necessary for full steroidogenesis was practically identical for a series of peptides that differed widely in potency. These findings support the postulate that cyclic AMP accumulation and steroidogenesis in adrenocortical cells are coupled processes. The differential behavior of bovine adrenal plasma membranes and bovine adrenocortical cells toward ACTH analogs indicates that structure-function studies using cyclase assays may not reflect events that take place in the intact adrenal or in cell preparations derived therefrom.  相似文献   

4.
Various lipoxygenase (LO) products of arachidonic acid (AA) have been found to have potent biological activities and modulate physiological processes in various cells including endocrine cells. However, no studies concerning LO products in adrenocortical cells have been reported. The present study was performed to investigate LO products in rat adrenocortical cells and its role in ACTH-stimulated adrenal steroidogenesis. LO metabolites produced in ACTH-stimulated rat adrenocortical cells prelabeled with [3H]AA was analyzed by reverse phase and straight phase HPLC and two 5-LO products, 5-hydroxyeicosatetraenoic acid (5-HETE) and leukotriene B4 (LTB4) were identified. ACTH-induced 5-HETE and LTB4 production in adrenal cells was dose dependently inhibited by AA861, a specific inhibitor of 5-LO. AA861 reduced ACTH-stimulated corticosteroid production without any change in cyclic AMP formation, while indomethacin did not affect both corticosteroid and cyclic AMP production. Reduced steroidogenesis by AA861 was reversed by the addition of 5-hydroperoxyeicosatetraenoic acid (5-HPETE). Also exogenously added 5-HPETE dose dependently augmented ACTH-stimulated corticosteroid production without any concomitant change in cyclic AMP production. However, 5-HETE and LTB4 had no such effect. These results indicate that 5-LO pathway is present in rat adrenocortical cells and its metabolites, most likely 5-HPETE, may play an important role in adrenal steroidogenesis.  相似文献   

5.
Dispersed rat adrenal cells prepared from both the capsule and the decapsulated gland were used to investigate the effects on cyclic AMP accumulation of known stimuli of steroidogenesis [ACTH (adrenocorticotrophin), angiotensin II, K(+) ions and 5-hydroxytryptamine]. Since glomerulosa-cell preparations from capsular strippings are normally contaminated with a proportion of fasciculata cells, cells purified by fractionation on a bovine serum albumin gradient were also used. The results showed that: (1) ACTH and angiotensin II stimulated cyclic AMP accumulation in both fractionated and unfractionated zona fasciculata cells; (2) 5-hydroxytryptamine and an increased extracellular K(+) concentration (from 3.6 to 8.4mm) had no effect on cyclic AMP concentrations in fasciculata cell preparations; (3) the addition of ACTH, angiotensin II, 5-hydroxytryptamine or K(+) to the incubation medium resulted in increased cyclic AMP concentrations in unpurified zona glomerulosa cell preparations; (4) fractionation and hence the virtual elimination of fasciculata contamination, did not affect the response to 5-hydroxytryptamine and increased K(+) concentration. However, the responses to ACTH and angiotensin II were markedly lowered but not abolished. These results strongly suggest a link between cyclic AMP production and steroidogenesis in the zone of the adrenal gland that specifically secretes aldosterone. All four agents used stimulated both steroid output and cyclic AMP accumulation. However, at certain doses of 5-hydroxytryptamine, K(+) and angiotensin II the significant increases in corticosterone output were not accompanied by measurable increases in cyclic AMP accumulation.  相似文献   

6.
The effects of cholera toxin on isolated rat adrenocortical cells have been investigated. Both steroid and cyclic AMP output from adrenal cells were increased by the toxin in a dose dependent fashion. The concentration of toxin for half maximal stimulation for both of these responses was about 40 ng/ml. Maximal steroidogenesis and cyclic AMP output was obtained with similar concentrations of the toxin. A correlation was observed between the low amounts of cyclic AMP produced in response to all doses of cholera toxin and to physiologically significant concentrations of adrenocorticotropin (ACTH) (< 0.1 munit/ml; i.e. submaximal for steroidogenesis in this system). This was in direct contrast to the much higher levels of cyclic AMP generated by concentrations of ACTH greater than 1 munits/ml. Time course studies demonstrated a time-lag between toxin addition and steroid response of at least 40 min. Binding of cholera toxin to adrenal cells was rapid and was 90% complete within 15 min at both 37 and 0°C. These data indicate that most of the delay in response to cholera toxin is due to processes subsequent to the initial binding interaction. Following the initial delay the subsequent maximal rate of steroidogenesis brought about by cholera toxin was very similar to that obtained with a concentration of ACTH that was maximal for steroidogenesis. Significant increases in cyclic AMP levels were detected about 20 min before increased steroidogenesis was apparent. Possible explanations for this result are considered. The results presented indicate great potential use for cholera toxin in the study of adrenal steroidogenic control mechanisms, particularly at the level of receptor mechanisms and the role of cyclic AMP.  相似文献   

7.
Comparative studies on the mechanism of action of ACTH1-39 and ACTH5-24 [corticotropin-(1-39)- and corticotropin-(5-24)-peptides] on isolated rat adrenal cells were performed. The relationship between stimulated steroidogenesis and cyclic AMP was very different, suggesting that cyclic AMP does not play the same role in mediating the action of the two agonists. Data from three separate experiments showed that the competitive antagonist ACTH6-24 [corticotropin-(6-24)-peptide] had mean inhibitor constants of 13.4 +/- 3.1 nM against ACTH1-39 and 3.4 +/- 1.0 nM against ACTH5-24, indicating that the steroidogenic actions of these two agonists are mediated by two different receptor types. We conclude that there are two possible mechanisms for corticotropin action, only one of which involves the necessary production of cyclic AMP.  相似文献   

8.
The data presented with the isolated adrenal cells, in the present study, show that adrenocorticotropin in the physiological concentration range stimulates the synthesis of guanosine 3':5'-monophosphate(cyclic GMP), protein kinase activity, and steroidogenesis in a concentration-dependent manner without detectable rise in the levels of adenosine 3':5'-monophosphate (cyclic AMP). Millimolar concentrations of cyclic AMP and cyclic GMP, which stimulate corticosterone synthesis, also activate kinase activity and steroidogenesis in a sigmoid concentration-response manner. The process of phosphorylation activated by corticotropin, cyclic AMP and cyclic GMP is not inhibited by cycloheximide or actinomyin D. It is therefore proposed that the hormonal responses mediated by cyclic GMP and cyclic AMP are via the protein kinase enzymatic steps, and the inhibitory effect of cycloheximide and actinomycin D in corticotropin-stimulated steroidogenesis follows this step. In conjuction with our previous observations that the biosynthetic steps from (20S)-20-hydroxycholesterol to corticosterone are neither inhibited by cycloheximide nor affected by cyclic GMP, it is inferred that the rate-limiting step of adrenal steroidogenesis is the transformation of cholesterol to (20S)-20hydroxycholesterol and this very step is regulated by cyclic GMP and cyclic AMP. Of further significance are the findings that micromolar cincentrations of cyclic AMP and cyclic GMP, which do not stimulate steroidogenesis, effectively stimulate protein kinase activity in a concentration-dependent manner. It is therefore concluded that all cyclic-nucleotide-dependent protein kinase activities of the cell are not necessarily related to steroidogenesis.  相似文献   

9.
The inhibitory action of dexamethasone on the adrenal steroidogenic response to ACTH was confirmed by im administration of graded doses (5, 10 and 30 ng) of synthetic beta 1-24 ACTH to young adult male rats which had received dexamethasone (0.1 mg/100 g bw) 4 hr prior to sacrifice. Following this, kinetic studies were performed by measuring plasma corticosterone, adrenocortical cyclic AMP and cyclic GMP before and 4, 12 and 30 min after administration of either 10 or 30 ng of ACTH. These doses were selected because their effects could be either completely or partially inhibited by dexamethasone. In rats without dexamethasone all the doses of ACTH which were checked induced an increase in both corticosterone and cyclic AMP and a decrease in cyclic GMP. With the smallest dose of ACTH the earlier administration of dexamethasone resulted in complete suppression of both the steroidogenic response and the cyclic AMP response. With the largest dose of ACTH both responses were diminished. In dexamethasone-treated rats the decrease in cyclic GMP was significantly less pronounced 4 min after ACTH than it was in non-treated rats. These results support the view that cyclic AMP and cyclic GMP might both be concerned with the mechanism of acute adrenal steroidogenesis.  相似文献   

10.
Angiotensin II effects on cyclic AMP production and steroid output were studied in a sensitive preparation of isolated rat adrenal glomerulosa cells. With increasing concentrations of angiotensin II logarithmic dose-response curves for aldosterone and cyclic AMP production were similar. The minimum effective dose (0.2nm) for stimulation of aldosterone production also significantly (P<0.001) increased cyclic AMP output. For both aldosterone and cyclic AMP production, the peptide hormone concentration eliciting maximal response (0.2mum) and the ED(50) (median effective dose) values (1nm) were the same; this is consistent with cyclic AMP acting as an intracellular mediator for angiotensin II-stimulated aldosterone production by glomerulosa cells. The angiotensin II antagonist [Sar(1),Ala(8)]angiotensin II inhibited angiotensin II-stimulated corticosterone and aldosterone production in these cells. An equimolar concentration of antagonist halved the response to 20nm-angiotensin II, and complete inhibition was observed with 0.2mum-antagonist. In contrast, [Sar(1),Ala(8)]angiotensin II had no effect on maximally stimulated steroidogenesis induced by serotonin and a raised extracellular K(+) concentration. Increasing concentrations of [Sar(1),Ala(8)]angiotensin II alone decreased corticosterone and aldosterone outputs significantly (P<0.05) at concentrations of 20nm and 2nm of antagonist respectively. A significant (P<0.001) decrease in cyclic AMP production occurred with 2mum antagonist and this was comparable with the decrease in aldosterone production. It is concluded that [Sar(1),Ala(8)]angiotensin II can independently affect glomerulosa-cell steroidogenesis, possibly by modulating adenylate cyclase activity.  相似文献   

11.
The role of cyclic AMP in the regulation of aldosterone production by adrenocorticotropic hormone (ACTH), angiotensin II (A II), potassium, and serotonin was examined in collagenase-dispersed adrenal glomerulosa cells. The ability of 8-bromo cyclic AMP and choleragen to stimulate maximum aldosterone production indicated that cyclic AMP could act as second messenger for certain of the aldosterone-stimulating factors. The actions of ACTH and choleragen on aldosterone and cyclic AMP production were correlated in dog and rat cells, and a similar relation was seen during stimulation of rat cells by serotonin. In contrast, A II and potassium did not cause changes in cyclic AMP formation while stimulating aldosterone production. Intracellular and receptor-bound cyclic AMP were increased 3-fold by 10(-7) M ACTH but not by A II. Addition of a phosphodiesterase inhibitor increased the magnitude of the cyclic AMP response to ACTH but did not change the lack of stimulation by A II or potassium. In dog cells, the effects of A II and potassium on aldosterone production were partially additive to those of ACTH, choleragen, and 8-bromo cyclic AMP. In contrast, no additivity was observed between A II and potassium, or between combinations of the cyclic AMP-dependent stimuli. These results indicate that the actions of ACTH on aldosterone secretion are mediated by cyclic AMP formation, whereas A II and potassium stimulate aldosterone production through an independent mechanism. The lack of additivity between steroid responses to A II and potassium suggests that these factors could share a common mode of action on steroidogenesis in zona glomerulosa cells.  相似文献   

12.
The regulatory role of cyclic nucleotide phosphodiesterase(s) and cyclic AMP metabolism in relation to progesterone production by gonadotropins has been studied in isolated rat ovarian cells. Low concentrations of choriogonadotropin (0.4-5ng/ml) increased steroid production without any detectable increase in cyclic AMP, when experiments were carried out in the absence of phosphodiesterase inhibitors. The concentration of choriogonadotropin (10ng/ml) that stimulated progesterone synthesis maximally resulted in a minimal increase in cyclic AMP accumulation and choriogonadotropin binding. Choriogonadotropin at a concentration of 10ng/ml and higher, however, significantly stimulated protein kinase activity and reached a maximum between 250 and 1000ng of hormone/ml. Higher concentrations (50-2500ng/ml) of choriogonadotropin caused an increase in endogenous cyclic AMP, and this increase preceded the increase in steroid synthesis. Analysis of dose-response relationships of gonadotropin-stimulated cyclic AMP accumulation, progesterone production and protein kinase activity revealed a correlation between these responses over a wide concentration range when experiments were performed in the presence of 3-isobutyl-1-methylxanthine. The phosphodiesterase inhibitors papaverine, theophylline and 3-isobutyl-1-methylxanthine each stimulated steroid production in a dose-dependent manner. Incubation of ovarian cells with dibutyryl cyclic AMP or 8-bromo cyclic AMP mimicked the steroidogenic action of gonadotropins and this effect was dependent on both incubation time and nucleotide concentration. Maximum stimulation was obtained with 2mm-dibutyryl cyclic AMP and 8-bromo cyclic AMP, and this increase was close to that produced by a maximally stimulating dose of choriogonadotropin. Other 8-substituted derivatives such as 8-hydroxy cyclic AMP and 8-isopropylthio cyclic AMP, which were less susceptible to phosphodiesterase action, also effectively stimulated steroidogenesis. The uptake and metabolism of cyclic [(3)H]AMP in ovarian cells was also studied in relation to steroidogenesis. When ovarian cells were incubated for 2h in the presence of increasing concentrations of cyclic [(3)H]AMP, the radioactivity associated with the cells increased almost linearly up to 250mum-cyclic [(3)H]AMP concentration in the incubation medium. The (3)H label in the cellular extract was recovered mainly in the forms ATP, ADP, AMP, adenosine and inosine, with cyclic AMP accounting for less than 1% of the total tissue radioactivity. Incubation of cyclic AMP in vitro with ovarian cells resulted in a rapid breakdown of the nucleotide in the medium. The degradation products in the medium have been identified as AMP, adenosine and inosine. The rapid degradation of cyclic AMP by phosphodiesterase(s) makes it difficult to correlate changes in cyclic AMP concentrations with steroidogenesis. These observations thus provide an explanation for the previously observed lack of cyclic AMP accumulation under conditions in which low doses of choriogonadotropin stimulated steroidogenesis without any detectable changes in cyclic AMP accumulation.  相似文献   

13.
Isolated fasciculata cells of rat adrenal cortex, when incubated with atrial natriuretic factor (ANF), stimulated the levels of cyclic GMP and corticosterone production in a concentration-dependent manner without a rise in the levels of cyclic AMP. The ANF-dependent elevation of cyclic GMP was rapid, with a detectable increment in 30 s. ANF also stimulated the particulate guanylate cyclase. These results not only indicate the coupling of cyclic GMP and corticosterone production with ANF signal, but also demonstrate that, like the ACTH signal, cyclic AMP is not the mediator of ANF-induced adrenocortical steroidogenesis.  相似文献   

14.
M P Mattson  J J Mrotek 《Steroids》1985,46(1):619-637
Using cultured Y-1 mouse adrenal tumor cells which produce 20 alpha-hydroxy-4-pregnen-3-one (20-DHP), it was found that 0.01 mM corticosterone and deoxycorticosterone increased basal and inhibited ACTH-induced 20-DHP production during consecutive 30 and 120 min incubations. Steroid effects were concentration-dependent and reversible. Six other steroids tested did not stimulate 20-DHP production and varied in ability to inhibit ACTH-stimulated steroidogenesis. Experiments demonstrated that 20-DHP production following treatment with cholera toxin, N,0'-dibutyryl cyclic AMP (dbcAMP), or pregnenolone was not inhibited by exogenous steroids. Corticosterone (0.01 mM) increased basal and inhibited ACTH-induced intracellular cyclic AMP (cAMP) production. Cytochalasin D, a microfilament perturbing agent, inhibited steroid-stimulated 20-DHP production, suggesting that ACTH and steroid stimulation mechanisms were similar. These findings taken together suggest that exogenous steroids can alter steroidogenesis by modifying plasma membrane adenylate cyclase activity.  相似文献   

15.
Abstract

Isolated adrenal fasciculata cells were purified by centrifugation through a 0-50% hyperbolic gradient of PercollR. The dose-dependence and kinetics of both intracellular cyclic AMP accumulation and steroido-genesis in response to ACTH1-39 and ACTH5-24 (corticotropin-(1-39) and corticotropin-(5-24)-peptides) were determined using purified cells. The rate of intracellular cyclic AMP formation was maximal during the first five minutes after hormone addition and remained constant or fell thereafter. Therefore intracellular cyclic AMP accumulation, assessed after 5 min., was compared with steroid output after 20 min. Maximal steroidogenesis was elicited by ACTH5-24 without discerning a significant stimulation of intracellular cyclic AMP accumulation. ACTH6-24 (corticotropin-(6-24)-peptide) could completely inhibit the intracellular cyclic AMP accumulation elicited by ACTH1-39 or by ACTH5-24 at concentrations that only partially inhibited steroidogenesis.

It is possible that there are two pathways for the steroidogenic action of ACTH, one of which is obligatorily mediated by intracellular cyclic AMP, and another which involves a different mediator.  相似文献   

16.
Because several groups have recently questioned a mediating role for cyclic AMP in adrenocortical steroidogenesis, we analysed the problem in more detail by measuring three different cyclic AMP pools in cells isolated from decapsulated rat adrenals. Extra-cellular, total intracellular and bound intracellular cyclic AMP were determined by radioimmunoassay in comparison with corticosterone production induced by low corticotropin concentrations. The increase in extracellular and total intracellular cyclic AMP with low corticotropin concentrations was dependent on the presence of a phosphodiesterase inhibitor and short incubation times. Bound intracellular cyclic AMP was less dependent on these two parameters. In unstimulated cells cyclic AMP bound to its receptor represents only a small fraction of the total intracellular cyclic AMP. After stimulation by a concentration of corticotropin around the threshold for corticosterone production, an increase in bound cyclic AMP was observed which correlated very well with steroidogenesis both temporally and with respect to corticotropin concentration. This finding was complemented by measuring a concomitant decrease in free receptor sites. Full occupancy of the receptors was not necessary for maximal steroidogenesis. Binding kinetics of cyclic [(3)H]AMP in concentrations equivalent to the intracellular cyclic AMP concentration suggest the presence of at least three different intracellular cyclic AMP pools. These observations are in agreement with a possible role for cyclic AMP as a mediator of acute steroidogenesis induced by low corticotropin concentrations.  相似文献   

17.
The Wnt family molecules Dickkopf-3 (DKK3) and WNT4 are present at higher concentrations in the zona glomerulosa than in the rest of the adrenal cortex. In order to study direct effects of these proteins on adrenocortical cell function, we created adenoviruses encoding human DKK3 and WNT4. When added to cultured human adrenocortical cells, DKK3 inhibited aldosterone and cortisol biosynthesis, either alone or together with cyclic AMP. WNT4 increased steroidogenesis when added alone but decreased it in the presence of cyclic AMP. A control adenovirus encoding GFP had no effect. RNA was prepared from cultured cells and was assayed by real-time PCR. CYP11A1 (cholesterol side-chain cleavage enzyme), HSD3B2 (3beta-hydroxysteroid dehydrogenase type II), CYP17 (17alpha-hydroxylase), CYP21 (21-hydroxylase) and CYP11B1 (11beta-hydroxylase) mRNAs were all increased by cyclic AMP, whereas CYP11B2 (aldosterone synthase) was unaffected. DKK3 decreased cyclic AMP-stimulated CYP17. WNT4 increased both CYP17 and CYP21 in the absence of cyclic AMP. Both DKK3 and WNT4 increased the level of CYP11B2. These data show that these Wnt signaling molecules have multiple actions on steroidogenesis in adrenocortical cells, including effects on overall steroidogenesis (aldosterone and cortisol biosynthesis) and distinct effects on steroidogenic enzyme mRNA levels. The co-localization of DKK3 and WNT4 in the glomerulosa and their stimulation of CYP11B2 imply an action on glomerulosa-specific function.  相似文献   

18.
Inhibitors of protein synthesis decrease protein synthesis in isolated rat adrenal cells to a greater extent than they decrease adenosine-3',5'-cyclic phosphate (cyclic AMP)-stimulated steroidogenesis. At low concentrations of the inhibitors, varying degrees of recovery of the rate of steroidogenesis occurs with increasing time of incubation. As the concentration is increased, the time required to achieve any recovery of the rate of steroidogenesis increases and the extent of recovery decreases. The recovery also depends on the amount of cyclic AMP present. During the process of recovery the inhibition of protein synthesis continues in a linear manner. An explanation consistent with these data involves a rapidly turningover protein, the concentration of which is independent of the level of cyclic AMP present. However, the extent of transformation of this protein to an active form depends on the concentration of cyclic AMP.  相似文献   

19.
To define the role of calcium during corticotropin-induced steroidogenesis, adrenal sections were incubated under conditions of varying degrees of calcium depletion. Corticosterone production, [14C]leucine incorporation into protein, and tissue cyclic AMP levels were measured concomitantly. Omitting calcium from the incubation media inhibited all three processes to variable extents, thus limiting conclusions regarding which process is most dependent on calcium. While calcium was required during the early phase of corticotropin action, it was not required during later phases: rapid induction of calcium deficiency did not diminish the heightened rate of steroidogenesis previously induced by corticotropin in the presence of calcium. Thus, while calcium is required for induction of steroidogenesis factor(s), the operation of the latter is not dependent upon calcium in the extracellular fluid.  相似文献   

20.
To define the role of calcium during corticotropin-induced steroidogenesis, adrenal sections were incubated under conditions of varying degrees of calcium depletion. Corticosterone production, [14C]leucine incorporation into protein, and tissue cyclic AMP levels were measured concomitantly. Omitting calcium from the incubation inhibited all three processes to variable extents, thus limiting conclusions regarding which process is most dependent on calcium.While calcium was required during the early phase of corticotropin action, it was not required during later phases; rapid induction of calcium defiency did not diminish the heightened rate of steroidogenesis previously induced by corticotropin in the presence of calcium. Thus, while calcium is required for induction of steroidogenesis factor(s), the operation of the latter is not dependent upon calcium in the extracellular fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号