首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
M Philipp  I H Tsai  M L Bender 《Biochemistry》1979,18(17):3769-3773
The p-nitrophenyl esters of straight-chain fatty acids were used as substrates of the enzyme subtilisin Novo (EC 3.4.4.16) and its chemically produced artificial enzyme thiolsubtilisin. Subtilisin and thiolsubtilisin pH--activity profiles were determined, and kinetic effects of the active site O-S substitution were observed. Among the substrates tested, both enzymes show highest specificity with p-nitrophenyl butyrate. It was also found that subtilisin is more sensitive to changes in substrate chain length than is thiolsubtilisin. Second-order acylation rate constants (k2/Ks) are remarkably similar for both enzymes. However, thiolsubtilisin deacylation rate constants and Km values are lower than analogous subtilisin constants. While thiolsubtilisin deacylation rate constants give a pH profile identical with that of subtilisin, the pH profile of thiolsubtilisin acylation rate constants shows an active site pK value lowered from the subtilisin pK of 7.15 and exhibits an inflection point at pH 8.45, which is absent in subtilisin.  相似文献   

2.
The comparative substrate specificities of five purified serine hydrolases from rat liver microsomes have been investigated, especially their action upon natural lipoids. All enzymes had high carboxylesterase activities with simple aliphatic and aromatic esters and thioesters. The broad pH optima were in the range of pH 6-10. Synthetic amides were less potent substrates. The hydrolytic activities towards palmitoyl-CoA and monoacyl glycerols were generally high, whereas phospholipids and palmitoyl carnitine were cleaved at moderate rates. Acetyl-CoA, acetyl carnitine, and ceramides were not cleaved at all. The closely related hydrolases with the highest isoelectric points (pI 6.2 and 6.4) were most active with palmitoyl-CoA and palmitoyl glycerol. One of these enzymes might also be responsible for the low cholesterol oleate-hydrolyzing capacity of rat liver microsomes. Among the other hydrolases, that with pI 6.0 showed significant activities with simple butyric acid esters, 1-octanoyl glycerol, and octanoylamide. The esterase with pI 5.6 had the relatively highest activities with palmitoyl carnitine and lysophospholipids. The purified enzyme with pI 5.2 showed some features of the esterase pI 5.6, but generally had lower specific activities, except with 4-nitrophenyl acetate. The lipoid substrates competitively inhibited the arylesterase activity of the enzymes. The varying activities of the individual hydrolases were influenced in parallel by a variety of inhibitors, indicating that the purified hydrolases possessed a relatively broad specificity and were not mixtures of more specific enzymes. The nomenclature of the purified hydrolases is discussed.  相似文献   

3.
Organic solvent-soluble -chymotrypsin (CT) and subtilisin Carlsberg (SC) are effective catalysts for peptide synthesis in homogeneous organic solutions. The soluble enzymes have values of kcat/Km for the reaction of N-Bz-L-Tyr-OEt with L-Leu-NH2 to yield the dipeptide N-Bz-L-Tyr-L-Leu-NH2 that are over 3 orders of magnitude higher than their suspended counterparts in isooctane (containing 30% (v/v) tetrahydrofuran (THF) to aid in substrate solubility). Both enzymes are substantially more active in hydrophobic organic solvents than hydrophilic solvents. Adding small concentrations of water (<0.2% and 1% (v/v) in isooctane-THF and ethyl acetate, respectively) results in up to a 150-fold activation of -chymotrypsin-catalyzed peptide synthesis. Importantly, added water does not promote hydrolysis in either isooctane-THF or ethyl acetate; thus, -chymotrypsin is highly selective toward peptide synthesis in the nearly anhydrous organic solutions. Unlike CT, the activation of subtilisin Carlsberg upon partial hydration of isooctane-THF or ethyl acetate was not significant and actually resulted in substantial hydrolysis. Using -chymotrypsin, a variety of tripeptides were produced from dipeptide amino acid esters. Reactivity of D-amino acid amides as acyl acceptors and partially unblocked amino acid acyl donors further expands the generality of the use of organic solvent-soluble enzymes as peptide synthesis catalysts.  相似文献   

4.
Cathepsin B (EC 3.4.22.1) and an analogous thiol proteinase were isolated from mouse liver and from a transplantable tumor induced by methylcholanthrene, respectively, by a sequence of steps involving salt fractionation and ion exchange and gel permeation chromatography. Both enzymes are capable of hydrolyzing N-benzyloxycarbonyl-L-Ala-L-Arg-L-Arg-4-methoxy-2-naphthylamide but are weakly active towards N-benzoyl-DL-arginine-2-naphthylamide. The specific activity of the liver enzyme towards these substrates is approximately 14 times greater than that of the tumor enzyme. Both enzymes show a single band with slight difference in mobility when subjected to gel electrophoresis at pH 4.5, but both exhibit a multiple banding pattern when examined by isoelectric focusing. The tumor enzyme has a somewhat higher molecular weight than the liver enzyme (33,000 versus 30,000) and possesses a slightly higher helical content (48% versus 40%) based on CD spectra. Both enzymes display maximum activity in the pH range of 5.5 to 7.0 and are irreversibly denatured above pH 7 and below pH 4. Both enzymes cross-react with antiserum towards the tumor enzyme. The liver enzyme displays a higher catalytic efficiency towards a series of oligopeptide substrates than the tumor enzyme, but is only one-third as active towards N-benzoyl-L-arginine-2-naphthylamide. Both proteinases exhibit similar patterns of inhibition by iodoacetate, chloroquine, leupeptin, antipain, and several peptide chloromethylketones. Despite what appear to be subtle differences in physical properties, amino acid composition data and peptide mapping revealed significant differences between these two enzymes reflective of extensive regions of non-identity. These results suggest that the tumor thiol protease and liver cathepsin B are products of separate genes and that the tumor enzyme is not likely an immediate precursor of the liver enzyme produced by post-translational modification.  相似文献   

5.
A chymotrypsin-like esterase was purified from beef lung. This lysosomal enzyme, not previously characterized, seemed to be composed of two or more forms with molecular weights of about 52 000. It hydrolysed N-benzoyl-DL-phenylalanine beta-naphthol ester at acid and neutral pH; it polymerized L-phenylalanine methyl ester(Phe-OMe) at neutral pH; and it transferred the Phe-residue from Phe-OMe to hydroxylamine at neutral pH. Phenylmethanesulfonyl fluoride, an inhibitor of hydrolytic enzymes with serine in their catalytic site, inhibited this enzyme, but pepstatin, the cathepsin D (EC 3.4.4.23) inhibitor, did not. Sulfhydryl reagents were not required for activity. Macrophages, especially pulmonary alveolar macrophages, were a rich source of this esterase, so it is likely that the enzyme purified from lung came from its macrophages. The esterase hydrolysed and transferred monoamino acid esters, especially those of the aromatic type. Cathepsin C, the dipeptidyl peptide hydrolase (EC 3.4.14.1), acted only on dipeptide esters and amides. Pancreatic chymotrypsin acted on both monoamino acid and dipeptide esters. The chymotrypsin-like esterase did not hydrolyse hemoglobin, casein, or plasma albumin. Thus its proteolytic activity, if present, must be limited to specific substrates, as yet unknown.  相似文献   

6.
The preparation and application of a new linker for the synthesis of peptide amides using a modified Fmoc-method is described. The new anchor group was developed based on our experience with 4,4'-dimethoxybenzhydryl (Mbh)-protecting group for amides. Lability towards acid treatment was increased dramatically and results in an easy cleavage procedure for the preparation of peptide amides. The synthesis of N-9-fluorenylmethoxycarbonyl- ([5-carboxylatoethyl-2.4-dimethoxyphenyl)- 4'-methoxyphenyl]-methylamin is reported in detail. This linker was coupled to a commercially available aminomethyl polystyrene resin. Peptide synthesis proceeded smoothly using HOOBt esters of Fmoc-amino acids. Release of the peptide amide and final cleavage of the side chain protecting groups was accomplished by treatment with trifluoroacetic acid-dichloromethane mixtures in the presence of scavengers. The synthesis of peptide amides such as LHRH and C-terminal hexapeptide of secretin are given as examples.  相似文献   

7.
We discuss in this article the origin and magnitude of the single bond rotational barrier in amides and esters. The high rotational barrier of amides is biochemically manifested in the limited conformational freedom of proteins, Since there are only two instead of three bonds to rotate about per arnino acid residue. On the basis of thermochemical estimates with model compounds, we find that the resonance energy of esters is somewhat higher than that of amides. However, the experimental rotational barrier for the former is considerably lower than the latter. We suggest esters have lower rotational barriers than the corresponding amides because they retain a large fraction of the resonance energy in the transition state. Justification is offerred using an orbital delocalization argument.  相似文献   

8.
alpha-Chymotrypsin (EC 3.4.21.1)-catalysed syntheses of peptides were performed with various N-acylated amino acid or peptide esters as donors, and amino acid derivatives, peptides or their derivatives as acceptors. Under optimal conditions the synthesis was almost quantitative. As acceptor nucleophiles, free amino acids or the ester derivatives were inadequate, but amino acid amides or hydrazides, di- or tri-peptides, or the amides, hydrazides and esters of the peptides were useful. The nucleophile specificity for synthesis was markedly similar to the leaving-group specificity in hydrolysis; hydrophobic or bulky amino acid residues were most effecient at both P1' and P2' positions [notation of Schechter & Berger (1967) Biochem. Biophys. Res. Commun. 27, 157-162], but L-proline as well as D-amino acid residues were the worst choices. The synthesis was further dependent on the solubility of the products synthesized; a higher yield of products was expected with lower solubility. As donor esters, good substrates were all useful. Accordingly, fragment condensation was possible by using N-acylated peptide esters and various peptides. The present study suggested that alpha-chymotrypsin may become a useful tool for peptide synthesis.  相似文献   

9.
Recombinant human interstitial collagenase, an N-terminal truncated form, delta 243-450 collagenase, recombinant human stromelysin-1, and an N-terminal truncated form, delta 248-460 stromelysin, have been stably expressed in myeloma cells and purified. The truncated enzymes were similar in properties to their wild-type counterparts with respect to activation requirements and the ability to degrade casein, gelatin, and a peptide substrate, but truncated collagenase failed to cleave native collagen. Removal of the C-terminal domain from collagenase also modified its interaction with tissue inhibitor of metalloproteinases-1. Hybrid enzymes consisting of N-terminal (1-242) collagenase.C-terminal (248-460) stromelysin and N-terminal (1-233) stromelysin.C-terminal (229-450) collagenase, representing an exchange of the complete catalytic and C-terminal domains of the two enzymes, were expressed in a transient system using Chinese hamster ovary cells and purified. Both proteins showed similar activity to their N-terminal parent and neither was able to degrade collagen. Analysis of the ability of the different forms of recombinant enzyme to bind to collagen by ELISA showed that both pro and active stromelysin and N-terminal collagenase.C-terminal stromelysin bound to collagen equally well. In contrast, only the active forms of collagenase and N-terminal stromelysin.C-terminal collagenase bound well to collagen, as compared with their pro forms.  相似文献   

10.
The effect of the microenvironment on the reactivity of the essential -- SH group of papain was studied by alkylation with methyl iodide and with the more polar iodoacetamide. Rate and activation parameters for these reactions were determined with two forms of the -- SH group: the free mercaptide ion at pH 10.0, and the mercaptide-imidazolium ion-pair at pH 5.5. The ion-pair of papain reacts with methyl iodide at a rate 1470 times less than that of thiolsubtilisin. This surprising difference between the reactivities of the two enzymes suggests that in contrast to thiolsubtilisin, where a non-polar environment enhances the rate, in the case of papain a more polar environment somewhat inhibits the reaction with the non-polar methyl iodide. The positive activation entropy for the papain reaction may indicate an 'ordered' structure of bound water around the sulfur atom. The high rate and the low activation entropy (organized transition state) of the reaction of papain with iodoacetamide can be explained in terms of hydrogen-bond formation between the enzyme and the amide group of the alkylating agent.  相似文献   

11.
A novel carboxypeptidase (CPD-S3) from Penicillium janthinellum IBT 3991 has been isolated in a two-step purification procedure by cation exchange and affinity chromatography. The enzyme is a serine carboxypeptidase with a denatured molecular mass determined by SDS of 62 kDa of which 32% is carbohydrate. The isoelectric point is 5.1. CPD-S3 exhibits a high stability towards organic solvents and elevated temperatures. Besides the carboxypeptidase activity, CPD-S3 exhibits esterase, amidase, and carboxamidohydrolase activities. CPD-S3 favors substrates of -configuration with basic amino acid residues in either P1 or P1', and particularly dibasic substrates and medium-sized straight-chain alkyl esters for hydrolysis. In aminolysis of esters, amino acid amides and hydrazines coupled in good yield, but methyl esters poorly, and unlike other carboxypeptidases, free amino acids could not be coupled or transpeptidation effected to form amides. In ester semisynthesis, peptides with neutral, but not basic, residues in P1 could be esterified. The scope of applicability for enzymatic peptide synthesis is limited.  相似文献   

12.
R L Stein  A M Strimpler 《Biochemistry》1987,26(8):2238-2242
Acyl-enzymes of human leukocyte elastase (HLE) were generated in situ during the hydrolysis of peptide thiobenzyl esters and served as substrates for aminolysis by a variety of amino acid amides and short peptide nucleophiles. For amino acid amides, there is a positive correlation between nucleophilic reactivity toward N-methoxysuccinyl (MeOSuc)-Ala-Ala-Pro-Val-HLE and the hydrophobicity of the side chain. For peptides, nucleophilicity toward MeOSuc-Ala-Ala-Pro-Val-HLE decreases dramatically with increasing chain length. Combined, these results suggest that substrate specificity for the P1' residue may be more dependent on side chain hydrophobicity than on specific, structural features of the side chain and there may be no important binding interactions available past S1'. Kinetic parameters were also determined for the nucleophilic reactions of PheNH2 and TyrNH2 with MeOSuc-Pro-Val-HLE, MeOSuc-Ala-Pro-Val-HLE, MeOSuc-Ala-Ala-Pro-Val-HLE, and MeOSuc-Ala-Ala-Pro-Ala-HLE. Reactivity of these acyl-enzymes toward nucleophilic attack displays no dependence on peptide chain length but does increase significantly for the substrate with Ala at P1. This same correlation between reactivity and acyl-enzyme structure is also seen for nucleophilic attack by water.  相似文献   

13.
A procedure was developed to prepare in large amounts two carboxypeptidases, CPD-I and CPD-II, from Aspergillus niger. They were each shown to be serine proteases and single-chain monomers with molecular masses of ca. 81 kDa and containing 22% carbohydrates. Amino acid analysis, carbohydrate determination, and N-terminal sequencing (20 to 25 residues) were performed on each enzyme. CPD-I showed sequence homologies with malt carboxypeptidase II, while the N terminus of CPD-II was different from that of any known serine carboxypeptidase. Like carboxypeptidase Y from Saccharomyces cerevisiae and carboxypeptidase III from malt, CPD-II contained a free sulfhydryl group that could play a role in catalysis. Both A. niger enzymes had pH optima of about 4 and were unstable above pH 7. Their specificities for substrate positions P1 and P'1 were characterized by use of, as substrates, a series of N-blocked amino acid esters and dipeptides. Both enzymes were specific for Arg, Lys, and Phe in P1. CPD-I preferred hydrophobic residues in P'1, while CPD-II was highly specific for Arg and Lys in this position. Each displayed an original specificity when P1 and P'1 were considered together. The specificities were also studied by analyzing the time course of the release of amino acids from eight different peptides of various lengths. CPD-I and CPD-II appeared to be quite suitable for C-terminal sequence studies as well as for the synthesis of peptide bonds. The latter was studied with two peptide esters as aminolysis substrates and a series of amino acid amides as nucleophiles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A procedure was developed to prepare in large amounts two carboxypeptidases, CPD-I and CPD-II, from Aspergillus niger. They were each shown to be serine proteases and single-chain monomers with molecular masses of ca. 81 kDa and containing 22% carbohydrates. Amino acid analysis, carbohydrate determination, and N-terminal sequencing (20 to 25 residues) were performed on each enzyme. CPD-I showed sequence homologies with malt carboxypeptidase II, while the N terminus of CPD-II was different from that of any known serine carboxypeptidase. Like carboxypeptidase Y from Saccharomyces cerevisiae and carboxypeptidase III from malt, CPD-II contained a free sulfhydryl group that could play a role in catalysis. Both A. niger enzymes had pH optima of about 4 and were unstable above pH 7. Their specificities for substrate positions P1 and P'1 were characterized by use of, as substrates, a series of N-blocked amino acid esters and dipeptides. Both enzymes were specific for Arg, Lys, and Phe in P1. CPD-I preferred hydrophobic residues in P'1, while CPD-II was highly specific for Arg and Lys in this position. Each displayed an original specificity when P1 and P'1 were considered together. The specificities were also studied by analyzing the time course of the release of amino acids from eight different peptides of various lengths. CPD-I and CPD-II appeared to be quite suitable for C-terminal sequence studies as well as for the synthesis of peptide bonds. The latter was studied with two peptide esters as aminolysis substrates and a series of amino acid amides as nucleophiles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
An effort to identify the major general esterases of rat liver cytosol that are insensitive to the serine esterase inhibitor paraoxon (diethyl 4-nitrophenyl phosphate) has led to the isolation of a dozen enzymes. Four of these are electrophoretically homogeneous. Although purified on the basis of their hydrolytic activity toward 4-nitrophenyl acetate, each of the enzymes has a very broad and overlapping substrate specificity for aromatic esters. Thiol esters serve as substrates but, within the limits of the methods used, amides are not hydrolyzed.  相似文献   

16.
Binary phase behavior of saturated chain with unsaturated chain cholesteryl esters is evaluated by analysis of the phase diagrams in terms of ideal solution theory. Cholesteryl palmitate, which crystallizes in the bilayer structure, forms a eutectic with either cholesteryl oleate or cholesteryl linoleate and, as indicated by low angle X-ray data, the components are nearly totally fractionated in the solid state. The fit of the two experimental liquidus curves by a calculation of freezing point depression for an ideal solution indicates that the molecular interactions are nonspecific in the binary liquid state. Cholesteryl caprylate and cholesteryl oleate, both of which crystallize as the monolayer II form, also form a eutectic. X-ray data again indicate nearly total fractionation. The liquidus curve is reasonably well matched by calculation of ideal freezing point depression. However, dissimilar molecular volumes can cause the melt-cholesteric transition line to deviate from an ideal concentration dependence. Possible fractionation mechanisms for cholesteryl esters in arterial lesions are thereby indicated. For example, when the molecules have greatly different volumes, clustering can occur in the liquid crystalline state. Even when the molecular volumes are similar, the saturated component can solidify in regions where it is relatively abundant, because of the incompatibility of two crystal structures with greatly different layer structures.  相似文献   

17.
Fu J  Reinhold J  Woodbury NW 《PloS one》2011,6(4):e18692

Background

Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity.

Methodology/Principal Findings

A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation.

Conclusions/Significance

A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.  相似文献   

18.
Dermaseptin S9 (Drs S9) is an atypical cationic antimicrobial peptide with a long hydrophobic core and with a propensity to form amyloid-like fibrils. Here we investigated its membrane interaction using a variety of biophysical techniques. Rather surprisingly, we found that Drs S9 induces efficient permeabilisation in zwitterionic phosphatidylcholine (PC) vesicles, but not in anionic phosphatidylglycerol (PG) vesicles. We also found that the peptide inserts more efficiently in PC than in PG monolayers. Therefore, electrostatic interactions between the cationic Drs S9 and anionic membranes cannot explain the selectivity of the peptide towards bacterial membranes. CD spectroscopy, electron microscopy and ThT fluorescence experiments showed that the peptide adopts slightly more β-sheet and has a higher tendency to form amyloid-like fibrils in the presence of PC membranes as compared to PG membranes. Thus, induction of leakage may be related to peptide aggregation. The use of a pre-incorporation protocol to reduce peptide/peptide interactions characteristic of aggregates in solution resulted in more α-helix formation and a more pronounced effect on the cooperativity of the gel-fluid lipid phase transition in all lipid systems tested. Calorimetric data together with 2H- and 31P-NMR experiments indicated that the peptide has a significant impact on the dynamic organization of lipid bilayers, albeit slightly less for zwitterionic than for anionic membranes. Taken together, our data suggest that in particular in membranes of zwitterionic lipids the peptide binds in an aggregated state resulting in membrane leakage. We propose that also the antimicrobial activity of Drs S9 may be a result of binding of the peptide in an aggregated state, but that specific binding and aggregation to bacterial membranes is regulated not by anionic lipids but by as yet unknown factors.  相似文献   

19.
Summary Subtilisin Carlsberg and subtilisin BPN' (nagarse) catalyze peptide bond formation from aromatic amino acid esters and glycinamide in hydrophilic organic solvents. The activities of subtilisin and product compositions are different in several organic solvents; reactions in acetonitrile, tetrahydrofuran, and propylene carbonate gave the peptide in excellent yields, while in N,N-dimethylformamide and methanol the enzyme activity was largely retarded. The yield of the peptide is also dependent on water content in the reaction solutions. Optimum water contents are in the range from 3 to 7 %. The reaction is strongly specific for glycinamide as an amine component, and amides of alanine, valine, and leucine gave the corresponding peptides in poor yields.  相似文献   

20.
Derivatives of l-cysteine and the A chain of bovine insulin have been chemically modified at the cysteinyl β-sulfhydryl by certain sulfhydryl-specific alkyl alkanethiolsulfonate reagents. The alkanethiolation products possess mixed-disulfide side chains structurally similar to the side chains of lysine and phenylalanine and hence were studied here as substrates for trypsin and α-chymotrypsin, respectively. Kinetic parameters were obtained for the enzyme-catalyzed hydrolyses of the modified l-cysteine analogs and of specific reference amino acids which were derivatized analogously at both the α-amino and α-carboxyl groups and assayed identically. For both enzymes it was found that the specificity constants, kcatKm, for analog esters compare favorably with those for specific reference esters, whereas specificity constants for analog amides compare much less favorably with those for specific reference amides. This discrepancy is largely a consequence of the kcat values for the analog amides being relatively much lower than the corresponding values for the reference amides. Consistent with this trend, no detectable enzyme-catalyzed hydrolysis of the amide bonds at the sites of modified cysteine residues in the A chain of bovine insulin was observed. It is proposed that the predominant kinetic consequence of the mixed-disulfide side chains of the alkanethiolated cysteine moieties is a decrease in the acylation rate constants, k2, arising from an increase in the transition-state free energies of acylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号