首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volatile phenols are produced by Dekkera yeasts and are of organoleptic importance in alcoholic beverages. The key compound in this respect is 4-ethylphenol, responsible for the medicinal and phenolic aromas in spoiled wines. The microbial synthesis of volatile phenols is thought to occur in two steps, beginning with naturally occurring hydroxycinnamic acids (HCAs). The enzyme phenolic acid decarboxylase (PAD) converts HCAs to vinyl derivatives, which are the substrates of a second enzyme, postulated to be a vinylphenol reductase (VPR), whose activity results in the formation of ethylphenols. Here, both steps of the pathway are investigated, using cell extracts from a number of Dekkera and Brettanomyces species. Dekkera species catabolise ferulic, caffeic and p-coumaric acids and possess inducible enzymes with similar pH and temperature optima. Brettanomyces does not decarboxylate HCAs but does metabolise vinylphenols. Dekkera species form ethylphenols but the VPR enzyme appears to be highly unstable in cell extracts. A partial protein sequence for PAD was determined from Dekkera anomala and may indicate the presence of a novel enzyme in this genus.  相似文献   

2.
Aims:  The formation of ethylphenols in wines, a consequence of Dekkera/Brettanomyces metabolism, can affect their quality. The main aims of this work were to further our knowledge of Dekkera/Brettanomyces with respect to ethylphenol production, and to develop a methodology for detecting this spoilage yeast and for estimating its population size in wines using differential-selective media and high performance liquid chromatography (HPLC).
Methods and Results:  This work examines the reduction of p -coumaric acid and the formation of 4-vinylphenol and 4-ethylphenol (recorded by HPLC-DAD) in a prepared medium because of the activities of different yeast species and populations. A regression model was constructed for estimating the population of Dekkera/Brettanomyces at the beginning of fermentation via the conversion of hydroxycinnamic acids into ethylphenols.
Conclusions:  The proposed methodology allows the populations of Dekkera/Brettanomyces at the beginning of fermentation to be estimated in problem wines. Moreover, it avoids false positives because of yeasts resistant to the effects of the selective elements of the medium.
Significance and Impact of the Study:  This may help prevent the appearance of organoleptic anomalies in wines at the winery level.  相似文献   

3.
The effects of six phenolic compounds (o-, m-, and p-cresol and 2-, 3-, and 4-ethylphenol) on the anaerobic biodegradation of phenol was examined in batch methanogenic cultures. Results showed that ethylphenols were more inhibitory of phenol degradation than were cresols. The inhibitory effects of the three isomers of cresol and ethylphenol did not vary with the isomer but rather with the substituted functional group.  相似文献   

4.
The effects of six phenolic compounds (o-, m-, and p-cresol and 2-, 3-, and 4-ethylphenol) on the anaerobic biodegradation of phenol was examined in batch methanogenic cultures. Results showed that ethylphenols were more inhibitory of phenol degradation than were cresols. The inhibitory effects of the three isomers of cresol and ethylphenol did not vary with the isomer but rather with the substituted functional group.  相似文献   

5.
NADH-nitrate reductase has been highly purified from leaves of 8-day-old wheat (Triticum aestivum L. cv. Olympic) seedlings by affinity chromatography, using blue dextran-Sepharose 4B. Purification was assessed by polyacrylamide gel electrophoresis. The enzyme was isolated with a specific activity of 23 micromoles nitrite produced per minute per milligram protein at 25 C. At pH 7.5, the optimum pH for stability of NADH-nitrate reductase, this enzyme, and a component enzyme reduced flavin adenine mononucleotide (FMNH2)-nitrate reductase has a similar stability at both 10 and 25 C. Two other component enzymes—methylviologen-nitrate reductase and NADH-ferricyanide reductase—also have a similar but higher stability. At this pH the Arrhenius plot for decay of NADH-nitrate reductase and methylviologen-nitrate reductase indicates a transition temperature at approximately 30 C above which the energy of activation for denaturation increases. FMNH2-nitrate reductase and NADH-ferricyanide reductase do now show this transition. The energy of activation for denaturation (approximately 9 kcal per mole) of each enzyme is similar between 15 and 30 C. The optimum pH for stability of the component enzymes was: NADH-ferricyanide reductase, 6.6; FMNH2-nitrate reductase and methylviologen-nitrate reductase, 8.9. All of our studies indicate that the NADH-ferricyanide reductase was the most stable component of the purified nitrate reductase (at pH 6.6, t½ [25 C] = 704 minutes). Data are presented which suggest that methylviologen and FMNH2 do not donate electrons to the same site of the nitrate reductase protein.  相似文献   

6.
Thiosulfate reductase of the dissimilatory sulfate-reducing bacterium Desulfovibrio gigas has been purified 415-fold and its properties investigated. The enzyme was unstable during the different steps of purification as well as during storage at - 15 degrees C. The molecular weight of thiosulfate reductase estimated from the chromatographic behaviour of the enzyme on Sephadex G-200 was close to 220000. The absorption spectrum of the purified enzyme exhibited a protein peak at 278 nm without characteristic features in the visible region. Thiosulfate reductase catalyzed the stoichiometric production of hydrogen sulfide and sulfite from thiosulfate, and exhibited tetrathionate reductase activity. It did not show sulfite reductase activity. The optimum pH of thiosulfate reduction occurred between pH 7.4 and 8.0 and its Km value for thiosulfate was calculated to be 5 - 10(-4)M. The sensitivity of thiosulfate reductase to sulfhydryl reagent and the reversal of the inhibition by cysteine indicated that one or more sulfhydryl groups were involved in the catalytic activity. The study of electron transport between hydrogenase and thiosulfate reductase showed that the most efficient coupling was obtained with a system containing cytochromes c3 (Mr = 13000) and c3 (Mr = 26000).  相似文献   

7.
经5轮诱变筛选,从近平滑假丝酵母(Candida parapsilosis CICC1676)中分离得到产NADH依赖型羰基还原酶(Carbonyl reductase,CR)菌株CP-9。所产羰基还原酶(CRCp-9)经两步快速纯化获得纯化倍数为11.5倍,比活力为1.84 U/mg的酶液,其还原反应的最适pH值为6.5,最适温度为40℃。该酶转化β-羟基苯乙酮制备手性化合物(R)-苯基乙二醇,因此是(R)-专一性羰基还原酶。该酶与NADH普适性再生酶-甲酸脱氢酶(For-mate dehydrogenase,FDH)在胞外相耦联,构建伴有辅酶再生与反复利用的CR/FDH双酶催化制备立体醇体系,底物β-羟基苯乙酮转化率达95.4%,产物(R)-苯基乙二醇得率为93%,辅酶的总转化数(Total turn number, TTN)达267,产物e.e.值为98.6%,批次耦合反应生产能力达0.8 g/L/h,较单酶催化有较大提高,与细胞转化法相比也具有较好的生产能力。因此,伴有辅酶再生的胞外酶耦合催化具有潜在的制备手性醇化合物的工业应用价值。  相似文献   

8.
Aims: To investigate whether the presence of Pichia guilliermondii impacts on the production of volatile phenols from mixed wine fermentations with Dekkera bruxellensis and Saccharomyces cerevisiae. Methods and Results: Four inoculation strategies were performed in small‐scale fermentations involving P. guilliermondii, D. bruxellensis and S. cerevisiae using Syrah grape juice supplemented with 100 mg l?1 of p‐coumaric acid. High pressure liquid chromatography was used for the quantification or volatile phenols. Significant high levels of 4‐ethylphenol and 4‐ethylguaicol (720 and 545 μg l?1, respectively), as well as the highest levels of 4‐vinylphenol (>4500 μg l?1), were observed when P. guilliermondii species was inoculated from the beginning of the fermentation. Conclusions: The metabolic interaction occurring between the high vinylphenol producer species P. guilliermondii and D. bruxellensis exhibiting a high vinylphenol reductase activity resulted in an increased production of volatile phenols in wine. Significance and Impact of the Study: Pichia guilliermondii must be considered a very important spoilage yeast in the wine industry capable of producing large amounts of volatile phenols.  相似文献   

9.
Bovine brain microsomal NADH-cytochrome b5 (cyt. b5) reductase [EC 1.6.2.2] was solubilized by digestion with lysosomes, and purified 8,500-fold with a 20% recovery by procedures including affinity chromatography on 5'-AMP-Sepharose 4B. The purified enzyme showed one band of a molecular weight of 31,000 on polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS). Polyacrylamide gel electrophoresis of the purified enzyme without SDS revealed a major band with a faint minor band, both of which exhibited NADH-cyt. b5 reductase activity. The isoelectric points of these components were 6.0 (major) and 6.3 (minor). The apparent Km values of the purified enzyme for NADH and ferricyanide were 1.1 and 4.2 microM, respectively. The apparent Km value for cyt. b5 was 14.3 microM in 10 mM potassium phosphate buffer (pH 7.5). The apparent Vmax value was 1,190 mumol cyt. b5 reduced/min/mg of protein. The NADH-cyt. b5 reductase activity of the purified enzyme was inhibited by sulfhydryl inhibitors and flavin analogues. Inhibition by phosphate buffer or other inorganic salts of the enzyme activity of the purified enzyme was proved to be of the competitive type. These properties were similar to those of NADH-cyt. b5 reductase from bovine liver microsomes or rabbit erythrocytes, although the estimated enzyme content in brain was about one-twentieth of that in liver (per g wet tissue). An immunochemical study using an antibody to purified NADH-cyt. b5 reductase bovine liver microsomes indicated that NADH-cyt. b5 reductase from brain microsomes is immunologically identical to the liver microsomal enzyme.  相似文献   

10.
1. NADH-cytochrome b5 reductase was purified from sheep lung microsomes in the presence of non-ionic and ionic detergents, Emulgen 913 and cholate, respectively. 2. The purification procedure involved the ion-exchange chromatography of the detergent solubilized microsomes on DEAE-cellulose. 3. Further purification and concentration of lung reductase was carried out with a second DEAE-cellulose column followed by the affinity column chromatography of partially purified reductase on 5'-ADP-agarose column. 4. The specific activity of sheep lung reductase was 638 mumol ferricyanide reduced/min/mg protein and the yield was 6% of the initial activity in microsomes. 5. The SDS-polyacrylamide gel electrophoresis of the purified lung reductase showed one protein band having the monomer mol. wt of 34,500 +/- 1500. In the presence of 0.4% deoxycholate, it existed as an active dimer having a mol. wt of 68,500. 6. Trypsin treated lung reductase showed two extra protein bands of mol. wts of 28,000 and 25,000 on 10% SDS-polyacrylamide gels. 7. The purified enzyme was found to contain FAD as prosthetic group and the absorption spectrum of lung reductase showed two peaks at 390 and 461 nm which were typical for flavoproteins and a shoulder at 490 nm. 8. The maximal activity of lung reductase was observed between pH 6.5-8.0 and at pH 6.8, when ferricyanide and partially purified sheep lung cytochrome b5 was used as electron acceptors, respectively.  相似文献   

11.
Two enzymes have been partially purified from extracts of Escherchia coli B which together catalyze the conversion of the product of the action of GTP cyclohydrolase II, 2,5-diamino-6-oxy-4-(5'-phosphoribosylamine)pyrimidine, to 5-amino-2,6-dioxy-4-(5'-phosphoribitylamine)pyrimidine. These two compounds are currently thought to be intermediates in the biosynthesis of riboflavin. The enzymatic conversion occurs in two steps. The product of the action of GTP cyclohydrolase II first undergoes hydrolytic deamination at carbon 2 of the ring, followed by reduction of the ribosylamino group to a ribitylamino group. The enzyme which catalyzes the first step, herein called the "deaminase," has been purified 200-fold. The activity was assayed by detecting the conversion of the product of the reaction catalyzed by GTP cyclohydrolase II to a compound which reacts with butanedione to form 6,7-dimethyllumazine. The enzyme has a molecular weight of approximately 80,000 and a pH optimum of 9.1. The dephosphorylated form of the substrate is not deaminated in the presence of the enzyme. The assay for the enzyme which catalyzes the second step, referred to here as the "reductase," involves the detection of the conversion of the product of the deaminase-catalyzed reaction to a compound which, after treatment with alkaline phosphatase, reacts with butanedione to form 6,7-dimethyl-8-ribityllumazine. The reductase has a molecular weight of approximately 40,000 and a pH optimum of 7.5. Like the deaminase, the reductase does not act on the dephosphorylated form of its substrate. Reduced nicotinamide adenine dinucleotide phosphate is required as a cofactor; reduced nicotinamide adenine dinucleotide can be used about 30% as well as the phosphate form. The activity of neither enzyme is inhibited by riboflavin, FMN, or flavine adenine dinucleotide.  相似文献   

12.
Succinic semialdehyde reductase, a NADP+-dependent enzyme, was purified from whole pig brain homogenates. The enzyme preparation migrates as a single protein and activity band on analytical gel electrophoresis. Succinic semialdehyde reductase (Mr 110,000) catalyzes the reduction of succinic semialdehyde to 4-hydroxybutyrate. The equilibrium constant of the reaction is Keq = 5.8 X 10(7) M-1 at pH 7 and 25 degrees C. The inhibition kinetic patterns obtained when 4-hydroxybutyrate or substrate analogs are used as inhibitors of the reaction catalyzed by the reductase are consistent with an ordered sequential mechanism, in which the coenzyme NADPH adds to the enzyme before the aldehyde substrate. A specific aldehyde reductase was also purified to homogeneity from brain mitochondria preparations. Its catalytic properties are identical to those of the enzyme isolated from whole brain homogenates. It is postulated that two enzymes, i.e. a NAD+-dependent dehydrogenase and a NADP+-dependent reductase, participate in the metabolism of succinic semialdehyde in the mitochondria matrix.  相似文献   

13.
NADPH-cytochrome P450 reductase was purified to electrophoretic homogeneity from detergent-solubilized liver microsomes from the leaping mullet (Liza saliens). The purified reductase was characterized with respect to spectral, electrophoretic, and biocatalytic properties. In addition, effects of pH, ionic strength, and the substrate concentration on the NADPH-dependent cytochrome c reductase activity of the purified fish liver cytochrome P450 reductase were studied. Cytochrome P450 reductase was purified 438-fold with a yield of 17.5% with respect to the initial amount present in the fish liver microsomes. The specific activity of the enzyme was found to be 52.6 μmol cytochrome c reduced per minute per mg protein. The monomer molecular weight of the purified enzyme was calculated to be 77,000 ± 1000 when electrophoresed on polyacrylamide gels under the denaturing conditions in the presence of SDS. The absorption spectrum of fish reductase showed two peaks at 378 and 455 nm. NADPH-dependent cytochrome c reductase activity of the purified Liza saliens liver cytochrome P450 reductase was found to be maximal when pH was between 7.4 and 7.8. The apparent Km of the purified enzyme was found to be 7.69 μM for cytochrome c when the enzyme activity was measured in 0.3 M potassium phosphate buffer, pH 7.7, at room temperature, and the enzyme was fully saturated by its substrate, cytochrome c, when the substrate concentration was at or above the 70 μM. Furthermore, the purified enzyme was biocatalytically active in reconstituting the 7-ethoxyresorufin O-deethylase activity in the reconstituted system containing purified mullet liver cytochrome P4501A1 and lipid. These results suggested that the purified fish liver cytochrome P450 reductase is similar to its mammalian counterparts with respect to spectral, electrophoretic, and biocatalytic properties. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 103–113, 1998  相似文献   

14.
Methylenetetrahydrofolate reductase from human cadaver liver was purified to homogeneity. The purified enzyme had a molecular mass of 150 kDa. On SDS-polyacrylamide gel electrophoresis it was dissociated into a single fragment with a molecular mass of 39 kDa. In contrast, fresh lymphocyte enzyme extract showed a major band with a molecular mass of 75 kDa and a minor band of 39 kDa. Fresh liver enzyme was inhibited by S-adenosylmethionine while the purified enzyme from human cadaver liver was not inhibited. These observations suggest that human methylenetetrahydrofolate reductase is composed of two identical subunits of 75 kDa each but is cleaved into a major single band due to autolysis in cadaver liver. The purified cadaver enzyme was a FAD-specific protein. The pH optimum was 6.6 for methylenetetrahydrofolate-NADPH oxidoreductase, 6.5 for methyltetrahydrofolate-menadione oxidoreductase, and 7.2 for NADP-menadione oxidoreductase. The Km values of human liver methylenetetrahydrofolate reductase were 17 microns for NADPH and 38 microns for methyltetrahydrofolate in the reduction of menadione, and 12 microns for NADPH in the reduction of methylenetetrahydrofolate.  相似文献   

15.
Volatile phenols are aromatic compounds produced by some yeasts of the genus Brettanomyces as defense against the toxicity of hydroxycinnamic acids (p-coumaric acid, ferulic acid and caffeic acid). The origin of these compounds in winemaking involves the sequential action of two enzymes: coumarate decarboxylase and vinylphenol reductase. The first one converts hydroxycinnamic acids into hydroxystyrenes, which are then reduced to ethyl derivatives by vinylphenol reductase. Volatile phenols derived from p-coumaric acid (4-vinylphenol and 4-ethylphenol) have been described as the major contributors to self-defeating aromas associated with stable, gouache, wet mouse, etc., which generates large economic losses in the wine industry. The gene responsible for the production of 4-vinylphenol from p-coumaric acid has been identified as PAD1, which encodes a phenylacrylic acid decarboxylase. PAD1 has been described for many species, among them Candida albicans, Candida dubliniensis, Debaryomyces hansenii and Pichia anomala. In Brettanomyces bruxellensis LAMAP2480, a 666 bp reading frame (DbPAD) encodes a coumarate decarboxylase. Recent studies have reported the existence of a new reading frame belonging to DbPAD called DbPAD2 of 531 bp, which could encode a protein with similar enzymatic activity to PAD1. The present study confirmed that the transformation of Saccharomyces cerevisiae strain BY4722 with reading frame DbPAD2 under the control of the B. bruxellensis ACT1 promoter, encodes an enzyme with coumarate decarboxylase activity. This work has provided deeper insight into the origin of aroma defects in wine due to contamination by Brettanomyces spp.  相似文献   

16.
17.
Brettanomyces/Dekkera yeasts have been identified as part of the grape yeast flora. They are well known for colonizing the cellar environmental and spoiling wines, causing haze, turbidity and strong off-flavours in wines and enhancing the volatile acidity. As the general practices applied to combat Brettanomyces/Dekkera yeasts are not particularly appropriate during wine ageing and storage, a biological alternative to curtailing their growth would be welcomed in winemaking. In this study, we investigated the Kluyveromyces wickerhamii killer toxin (Kwkt) that is active against Brettanomyces/Dekkera spoilage yeasts. Purification procedures allowed the identification of Kwkt as a protein with an apparent molecular mass of 72 kDa and without any glycosyl residue. Interestingly, purified Kwkt has fungicidal effects at low concentrations under the physicochemical conditions of winemaking. The addition of 40 and 80 mg L(-1) purified Kwkt showed efficient antispoilage effects, controlling both growth and metabolic activity of sensitive spoilage yeasts. At these two killer toxin concentrations, compounds known to contribute to the 'Brett' character of wines, such as ethyl phenols, were not produced. Thus, purified Kwkt appears to be a suitable biological strategy to control Brettanomyces/Dekkera yeasts during fermentation, wine ageing and storage.  相似文献   

18.
Affinity chromatography of dihydrofolate reductase   总被引:10,自引:5,他引:5       下载免费PDF全文
1. Dihydrofolate reductase was purified from Lactobacillus casei MTX/R, and studied on affinity columns containing folic acid and methotrexate. Two forms of the enzyme were interconverted by incubation with substrates. 2. Affinity columns were prepared from agarose activated with cyanogen bromide and coupled with 1,6-diaminohexane. Stable folate derivatives were covalently attached by using a carbodi-imide condensation. 3. Columns containing folic acid retarded but did not retain the enzyme. 4. Methotrexate at pH 6.0 was particularly effective for retention of the enzyme. 5. There is selective loss of one form of the enzyme during affinity chromatography in the absence of added NADPH. This loss is due to conversion into a single enzyme form on the column. 6. NADPH has a dual effect in stabilizing the enzyme and in sensitizing it to inactivation by methotrexate, particularly in the presence of glycine. 7. Protein with affinity for methotrexate, but without dihydrofolate reductase activity, may also be eluted from the columns. 8. In a single-step procedure the enzyme was purified nearly 4000-fold from mammalian skin.  相似文献   

19.
Bacillus pumilus PS213 isolated from bovine ruminal fluid was able to transform ferulic acid and p-coumaric acid to 4-vinylguaiacol and 4-vinylphenol, respectively, by nonoxidative decarboxylation. The enzyme responsible for this activity has been purified and characterized. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude extract from a culture induced by ferulic acid or p-coumaric acid shows three bands that are not present in the crude extract of an uninduced culture, while the purified enzyme shows a single band of 23 kDa; the molecular mass calculated by size exclusion chromatography is 45 kDa. Enzyme activity is optimal at 37 degrees C and pH 5.5 and is not enhanced by any cation. Kinetic studies indicated a Km of 1.03 mM and a Vmax of 0.19 mmol.min-1/mg.liter-1 for ferulic acid and a Km of 1.38 mM and a Vmax of 0.22 mmol.min-1/mg.liter-1 for p-coumaric acid.  相似文献   

20.
2,4-Dienoyl-CoA reductase has been purified to homogeneity from Candida lipolytica cultivated in the presence of linoleic acid. The native enzyme had a molecular weight close to 360,000 as estimated by gel filtration on Sepharose CL-4B, whereas the subunit molecular weight estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 33,000. The purified 2,4-dienoyl-CoA reductase from C. lipolytica gave a single precipitin line with antibodies raised against the purified enzyme from C. lipolytica. The general properties of the 2,4-dienyl-CoA reductase from C. lipolytica were examined. The enzyme had optimal pH at 6.5 and was inactivated by heat treatment at 50 degrees C for 10 min. trans-2,trans-4-Octadienoyl-CoA was the most active substrate of the dienoyl-CoA esters examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号