首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nck-2 is a ubiquitously expressed adaptor protein comprising primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We report here that Nck-2 interacts with focal adhesion kinase (FAK), a cytoplasmic protein tyrosine kinase critically involved in the cellular control of motility. Using a mutational strategy, we have found that the formation of the Nck-2-FAK complex is mediated by interactions involving multiple SH2 and SH3 domains of Nck-2. The Nck-2 SH2 domain-mediated interaction with FAK is dependent on phosphorylation of Tyr397, a site that is involved in the regulation of cell motility. A fraction of Nck-2 co-localizes with FAK at cell periphery in spreading cells. Furthermore, overexpression of Nck-2 modestly decreased cell motility, whereas overexpression of a mutant form of Nck-2 containing the SH2 domain but lacking the SH3 domains significantly promoted cell motility. These results identify a novel interaction between Nck-2 and FAK and suggest a role of Nck-2 in the modulation of cell motility.  相似文献   

2.
Focal adhesion kinase (pp125FAK or FAK) and paxillin colocalize with integrins in structures called focal adhesions. pp125FAK plays an important role in the transmission of integrin-induced cytoplasmic signals. Paxillin has also been implicated in cell signaling by virtue of its association with the protein tyrosine kinases pp60src and Csk (C-terminal Src kinase) as well as with the adapter/oncoprotein p47gag-crk. In this report we show that endogenous pp125FAK and paxillin form a stable complex both in vivo and in vitro and that this interaction is direct, requiring only pp125FAK and paxillin. The paxillin binding site on pp125FAK has been localized to the carboxy-terminal 148 residues of pp125FAK, but appears to be distinct from the previously identified focal adhesion-targeting sequence also present in the carboxy-terminal domain of pp125FAK. The interaction of paxillin and pp125FAK is independent of the adhesion of cells to the extracellular matrix, as the association can be detected in suspension cells as well as those attached to fibronectin.  相似文献   

3.
The ArfGAP paxillin kinase linker (PKL)/G protein-coupled receptor kinase-interacting protein (GIT)2 has been implicated in regulating cell spreading and motility through its transient recruitment of the p21-activated kinase (PAK) to focal adhesions. The Nck-PAK-PIX-PKL protein complex is recruited to focal adhesions by paxillin upon integrin engagement and Rac activation. In this report, we identify tyrosine-phosphorylated PKL as a protein that associates with the SH3-SH2 adaptor Nck, in a Src-dependent manner, after cell adhesion to fibronectin. Both cell adhesion and Rac activation stimulated PKL tyrosine phosphorylation. PKL is phosphorylated on tyrosine residues 286/392/592 by Src and/or FAK and these sites are required for PKL localization to focal adhesions and for paxillin binding. The absence of either FAK or Src-family kinases prevents PKL phosphorylation and suppresses localization of PKL but not GIT1 to focal adhesions after Rac activation. Expression of an activated FAK mutant in the absence of Src-family kinases partially restores PKL localization, suggesting that Src activation of FAK is required for PKL phosphorylation and localization. Overexpression of the nonphosphorylated GFP-PKL Triple YF mutant stimulates cell spreading and protrusiveness, similar to overexpression of a paxillin mutant that does not bind PKL, suggesting that failure to recruit PKL to focal adhesions interferes with normal cell spreading and motility.  相似文献   

4.
The localization of focal adhesion kinase (FAK) to sites of integrin clustering initiates downstream signaling. The C-terminal focal adhesion targeting (FAT) domain causes this localization by interacting with talin and paxillin. FAT also mediates signaling through Grb2 via phosphorylated Y925. We report two crystal structures of the FAT domain. Large rearrangements of the structure are indicated to allow phosphorylation of Y925 and subsequent interaction with Grb2. Sequence homology and structural compatibility suggest a FAT-like fold for the C-terminal domains of CAS, Efs/Sin, and HEF1. A structure-based alignment including these proteins and the vinculin tail domain reveals a conserved region that could play a role in focal adhesion targeting. Previously postulated "paxillin binding subdomains" may contribute to structural integrity rather than directly to paxillin binding.  相似文献   

5.
Insulin has pleiotropic effects on the regulation of cell physiology through binding to its receptor. The wide variety of tyrosine phosphorylation motifs of insulin receptor substrate 1 (IRS-1), a substrate for the activated insulin receptor tyrosine kinase, may account for the multiple functions of insulin. Recent studies have shown that activation of the insulin receptor leads to the regulation of focal adhesion proteins, such as a dephosphorylation of focal adhesion kinase (pp125FAK). We show here that C-terminal Src kinase (Csk), which phosphorylates C-terminal tyrosine residues of Src family protein tyrosine kinases and suppresses their kinase activities, is involved in this insulin-stimulated dephosphorylation of focal adhesion proteins. We demonstrated that the overexpression of Csk enhanced and prolonged the insulin-induced dephosphorylation of pp125FAK. Another focal adhesion protein, paxillin, was also dephosphorylated upon insulin stimulation, and a kinase-negative mutant of Csk was able to inhibit the insulin-induced dephosphorylation of pp125FAK and paxillin. Although we have shown that the Csk Src homology 2 domain can bind to several tyrosine-phosphorylated proteins, including pp125FAK and paxillin, a majority of protein which bound to Csk was IRS-1 when cells were stimulated by insulin. Our data also indicated that tyrosine phosphorylation levels of IRS-1 appear to be paralleled by the dephosphorylation of the focal adhesion proteins. We therefore propose that the kinase activity of Csk, through the insulin-induced complex formation of Csk with IRS-1, is involved in insulin's regulation of the phosphorylation levels of the focal adhesion proteins, possibly through inactivation of the kinase activity of c-Src family kinases.  相似文献   

6.
pp125FAK is a tyrosine kinase that appears to regulate the assembly of focal adhesions and thereby promotes cell spreading on the extracellular matrix. In some cells, the C terminus of pp125FAK is expressed as a separate protein, pp41/43FRNK. We have previously shown that overexpression of pp41/43FRNK inhibits tyrosine phosphorylation of pp125FAK and paxillin and, in addition, delays cell spreading and focal adhesion assembly. Thus, pp41/43FRNK functions as a negative inhibitor of adhesion signaling and provides a tool to dissect the mechanism by which pp125FAK promotes cell spreading. We report here that the inhibitory effects of pp41/43FRNK expression can be rescued by the co-overexpression of wild-type pp125FAK and partially rescued by catalytically inactive variants of pp125FAK. However, coexpression of an autophosphorylation site mutant of pp125FAK, which fails to bind the SH2 domain of pp60c-Src, or a mutant that fails to bind paxillin did not promote cell spreading. In contrast, expression of pp41/43FRNK and pp60c-Src reconstituted cell spreading and tyrosine phosphorylation of paxillin but did so without inducing tyrosine phosphorylation of pp125FAK. These data provide additional support for a model whereby pp125FAK acts as a "switchable adaptor" that recruits pp60c-Src to phosphorylate paxillin, promoting cell spreading. In addition, these data point to tyrosine phosphorylation of paxillin as being a critical step in focal adhesion assembly.  相似文献   

7.
The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins for the ADP-ribosylation factor family of small GTP-binding proteins, but also serve as adaptors to link signaling proteins to distinct cellular locations. One role for GIT proteins is to link the PIX family of Rho guanine nucleotide exchange factors and their binding partners, the p21-activated protein kinases, to remodeling focal adhesions by interacting with the focal adhesion adaptor protein paxillin. We here identified the C-terminal domain of GIT1 responsible for paxillin binding. Combining structural and mutational analyses, we show that this region folds into an anti-parallel four-helix domain highly reminiscent to the focal adhesion targeting (FAT) domain of focal adhesion kinase (FAK). Our results suggest that the GIT1 FAT-homology (FAH) domain and FAT bind the paxillin LD4 motif quite similarly. Since only a small fraction of GIT1 is bound to paxillin under normal conditions, regulation of paxillin binding was explored. Although paxillin binding to the FAT domain of FAK is regulated by tyrosine phosphorylation within this domain, we find that tyrosine phosphorylation of the FAH domain GIT1 is not involved in regulating binding to paxillin. Instead, we find that mutations within the FAH domain may alter binding to paxillin that has been phosphorylated within the LD4 motif. Thus, despite apparent structural similarity in their FAT domains, GIT1 and FAK binding to paxillin is differentially regulated.  相似文献   

8.
The C-terminal region of focal adhesion kinase (FAK) consists of a right-turn, elongated, four-helix bundle termed the focal adhesion targeting (FAT) domain. The structure of this domain is maintained by hydrophobic interactions, and this domain is also the proposed binding site for the focal adhesion protein paxillin. Paxillin contains five well-conserved LD motifs, which have been implicated in the binding of many focal adhesion proteins. In this study we determined that LD4 binds specifically to only a single site between the H2 and H3 helices of the FAT domain and that the C-terminal end of LD4 is oriented toward the H2-H3 loop. Comparisons of chemical-shift perturbations in NMR spectra of the FAT domain in complex with the binding region of paxillin and the FAT domain bound to both the LD2 and LD4 motifs allowed us to construct a model of FAK-paxillin binding and suggest a possible mechanism of focal adhesion disassembly.  相似文献   

9.
Cell migration is a dynamic process that requires the coordinated formation and disassembly of focal adhesions (FAs). Several proteins such as paxillin, focal adhesion kinase (FAK), and G protein-coupled receptor kinase-interacting protein 1 (GIT1) are known to play a regulatory role in FA disassembly and turnover. However, the mechanisms by which this occurs remain to be elucidated. Paxillin has been shown to bind the C-terminal domain of FAK in FAs, and an increasing number of studies have linked paxillin association with GIT1 during focal adhesion disassembly. It has been reported recently that phosphorylation of serine 273 in the LD4 motif of paxillin leads to an increased association with Git1 and focal adhesion turnover. In the present study, we examined the effects of phosphorylation of the LD4 peptide on its binding affinity to the C-terminal domain of FAK. We show that phosphorylation of LD4 results in a reduction of binding affinity to FAK. This reduction in binding affinity is not due to the introduction of electrostatic repulsion or steric effects but rather by a destabilization of the helical propensity of the LD4 motif. These results further our understanding of the focal adhesion turnover mechanism as well as identify a novel process by which phosphorylation can modulate intracellular signaling.  相似文献   

10.
Vascular endothelial growth factor (VEGF) plays a significant role in blood-brain barrier breakdown and angiogenesis after brain injury. VEGF-induced endothelial cell migration is a key step in the angiogenic response and is mediated by an accelerated rate of focal adhesion complex assembly and disassembly. In this study, we identified the signaling mechanisms by which VEGF regulates human brain microvascular endothelial cell (HBMEC) integrity and assembly of focal adhesions, complexes comprised of scaffolding and signaling proteins organized by adhesion to the extracellular matrix. We found that VEGF treatment of HBMECs plated on laminin or fibronectin stimulated cytoskeletal organization and increased focal adhesion sites. Pretreating cells with VEGF antibodies or with the specific inhibitor SU-1498, which inhibits Flk-1/KDR receptor phosphorylation, blocked the ability of VEGF to stimulate focal adhesion assembly. VEGF induced the coupling of focal adhesion kinase (FAK) to integrin alphavbeta5 and tyrosine phosphorylation of the cytoskeletal components paxillin and p130cas. Additionally, FAK and related adhesion focal tyrosine kinase (RAFTK)/Pyk2 kinases were tyrosine-phosphorylated by VEGF and found to be important for focal adhesion sites. Overexpression of wild type RAFTK/Pyk2 increased cell spreading and the migration of HBMECs, whereas overexpression of catalytically inactive mutant RAFTK/Pyk2 markedly suppressed HBMEC spreading ( approximately 70%), adhesion ( approximately 82%), and migration ( approximately 65%). Furthermore, blocking of FAK by the dominant-interfering mutant FRNK (FAK-related non-kinase) significantly inhibited HBMEC spreading and migration and also disrupted focal adhesions. Thus, these studies define a mechanism for the regulatory role of VEGF in focal adhesion complex assembly in HBMECs via activation of FAK and RAFTK/Pyk2.  相似文献   

11.
Focal adhesion kinase (FAK) is a tyrosine kinase found in focal adhesions, intracellular signaling complexes that are formed following engagement of the extracellular matrix by integrins. The C-terminal 'focal adhesion targeting' (FAT) region is necessary and sufficient for localizing FAK to focal adhesions. We have determined the crystal structure of FAT and show that it forms a four-helix bundle that resembles those found in two other proteins involved in cell adhesion, alpha-catenin and vinculin. The binding of FAT to the focal adhesion protein, paxillin, requires the integrity of the helical bundle, whereas binding to another focal adhesion protein, talin, does not. We show by mutagenesis that paxillin binding involves two hydrophobic patches on opposite faces of the bundle and propose a model in which two LD motifs of paxillin adopt amphipathic helices that augment the hydrophobic core of FAT, creating a six-helix bundle.  相似文献   

12.
Hic-5 is a paxillin homologue with four LIM domains in its C-terminal region, localized mainly in focal adhesions in normal fibroblasts. Hic-5 is also known to associate with focal adhesion kinase (FAK) or the related CAKbeta, and with vinculin. In the present study, we examined changes in Hic-5 and paxillin protein levels in primary mouse embryo fibroblasts (MEF) during mortal and immortal stages. The Hic-5 level was markedly decreased when cells became immortalized, whereas that of paxillin was increased. The vinculin level was not changed significantly. Hic-5 was mainly localized in focal adhesion plaques of mortal MEF but was localized in the nuclear periphery in the immortalized MEF; the number of focal adhesion plaques was decreased in these cells. Mouse Hic-5 contains three LD domains in its N-terminal half, and the first LD domain (LD1) appears to be involved in interaction with FAK. However, this interaction was not essential for recruitment of Hic-5 to focal adhesions, since its subcellular localization was similar in FAK(-/-) cells. Forced expression of Hic-5 decreased colony forming ability of MEF from FAK(+/+) mice, but not of FAK(-/-) cells. These observations suggested the involvement of Hic-5 in determination of cellular proliferative capacity in collaboration with other cytoskeletal components.  相似文献   

13.
Src kinase is a crucial mediator of adhesion-related signaling and motility. Src binds to focal adhesion kinase (FAK) through its SH2 domain and subsequently activates it for phosphorylation of downstream substrates. In addition to this binding function, data suggested that the SH2 domain might also perform an important role in targeting Src to focal adhesions (FAs) to enable further substrate phosphorylations. To examine this, we engineered an R175L mutation in cSrc to prevent the interaction with FAK pY397. This constitutively open Src kinase mediated up-regulated substrate phosphorylation in SYF cells but was unable to promote malignant transformation. Significantly, SrcR175L cells also had a profound motility defect and an impaired FA generation capacity. Importantly, we were able to recapitulate wild-type motile behavior and FA formation by directing the kinase to FAs, clearly implicating the SH2 domain in recruitment to FAK and indicating that this targeting capacity, and not simply Src-FAK scaffolding, was critical for normal Src function.  相似文献   

14.
The p21-activated kinase PAK is targeted to focal complexes (FCs) through interactions with the SH3 domains of the PAK-interacting exchange factor PIX and Nck. PIX is a Rac GTP exchange factor that also binds the G-protein-coupled receptor kinase-interacting protein known as GIT1. Overexpression of GIT1 in fibroblasts or epithelial cells causes a loss of paxillin from FCs and stimulates cell motility. This is due to the direct interaction of a C-terminal 125-residue domain of GIT1 with paxillin, under the regulation of PIX. In its activated state, GIT1 can promote FC disassembly independent of actin-myosin contractile events. Additionally, GIT directly couples to a key component of FCs, focal adhesion kinase (FAK), via a conserved Spa2 homology domain. We propose that GIT1 and FAK cooperate to promote motility both by directly regulating focal complex dynamics and by the activation of Rac.  相似文献   

15.
Focal adhesion kinase-null (FAK(-/-) fibroblasts exhibit morphological and motility defects that are reversed by focal adhesion kinase (FAK) reexpression. The FAK-related kinase, proline-rich tyrosine kinase 2 (Pyk2), is expressed in FAK(-/-) cells, yet it exhibits a perinuclear distribution and does not functionally substitute for FAK. Chimeric Pyk2/FAK proteins were created and expressed in FAK(-/-) cells to determine the impact of Pyk2 localization to focal contacts. Whereas an FAK/Pyk2 COOH-terminal (CT) domain chimera was perinuclear distributed, stable expression of a Pyk2 chimera with the FAK-CT domain (Pyk2/FAK-CT) localized to focal contact sites and enhanced fibronectin (FN)-stimulated haptotactic cell migration equal to FAK-reconstituted cells. Disruption of paxillin binding to the FAK-CT domain (S-1034) inhibited Pyk2/FAK-CT localization to focal contacts and its capacity to promote cell motility. Paxillin binding to the FAK-CT was necessary but not sufficient to mediate the indirect association of FAK or Pyk2/FAK-CT with a beta 1-integrin-containing complex. Both FAK and Pyk2/FAK-CT but not Pyk2/FAK-CT S-1034 reconstituted FAK(-/-) cells, exhibit elevated FN-stimulated extracellular signal-regulated kinase 2 (ERK2) and c-Jun NH(2)-terminal kinase (JNK) kinase activation. FN-stimulated FAK or Pyk2/FAK-CT activation enhanced both the extent and duration of FN-stimulated ERK2 activity which was necessary for cell motility. Transient overexpression of the FAK-CT but not FAK-CT S-1034 domain inhibited both FN-stimulated ERK2 and JNK activation as well as FN-stimulated motility of Pyk2/FAK-CT reconstituted cells. These gain-of-function studies show that the NH(2)-terminal and kinase domains of Pyk2 can functionally substitute for FAK in promoting FN-stimulated signaling and motility events when localized to beta-integrin-containing focal contact sites via interactions mediated by the FAK-CT domain.  相似文献   

16.
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is regulated by integrins. Upon activation, FAK generates signals that modulate crucial cell functions, including cell proliferation, migration, and survival. The C-terminal focal adhesion targeting (FAT) sequence mediates localization of FAK to discrete regions in the cell called focal adhesions. Several binding partners for the FAT domain of FAK have been identified, including paxillin. We have determined the solution structure of the avian FAT domain in complex with a peptide mimicking the LD2 motif of paxillin by NMR spectroscopy. The FAT domain retains a similar fold to that found in the unliganded form when complexed to the paxillin-derived LD2 peptide, an antiparallel four-helix bundle. However, noticeable conformational changes were observed upon the LD2 peptide binding, especially the position of helix 4. Multiple lines of evidence, including the results obtained from isothermal titration calorimetry, intermolecular nuclear Overhauser effects, mutagenesis, and protection from paramagnetic line broadening, support the existence of two distinct paxillin-binding sites on the opposite faces of the FAT domain. The structure of the FAT domain-LD2 complex was modeled using the program HADDOCK based on our solution structure of the LD2-bound FAT domain and mutagenesis data. Our model of the FAT domain-LD2 complex provides insight into the molecular basis of FAK-paxillin binding interactions, which will aid in understanding the role of paxillin in FAK targeting and signaling.  相似文献   

17.
Focal adhesion kinase (FAK) plays an important role in integrin-mediated signal transduction pathways and its C-terminal noncatalytic domain Fak-related non-kinase (FRNK), which is autonomously expressed, acts as an inhibitor of FAK. A model has been proposed where FAK and FRNK compete for an essential common binding protein. A FRNK variant in which the direct interaction with v-Crk-associated tyrosine kinase substrate (CAS) was disturbed by point mutations still functioned as an inhibitor of FAK, suggesting that FRNK is unlikely to inhibit FAK by sequestering CAS. Deletion variants of FRNK within the region N-terminal to the focal adhesion targeting (FAT) sequence were still able to inhibit FAK function, indicating that this region is dispensable for the inhibitory effect of FRNK. Overexpression of a green fluorescent protein (GFP) fusion protein containing the FAT sequence delayed cell spreading and reduced FAK tyrosine phosphorylation. This indicates that the FAT sequence is the major inhibitory moiety within FRNK.  相似文献   

18.
The carboxy-terminal 150 residues of the focal adhesion kinase (FAK) comprise the focal adhesion-targeting sequence, which is responsible for its subcellular localization. The mechanism of focal adhesion targeting has not been fully elucidated. We describe a mutational analysis of the focal adhesion-targeting sequence of FAK to further examine the mechanism of focal adhesion targeting and explore additional functions encoded by the carboxy-terminus of FAK. The results demonstrate that paxillin binding is dispensable for focal adhesion targeting of FAK. Cell adhesion-dependent tyrosine phosphorylation strictly correlated with the ability of mutants to target to focal adhesions. Focal adhesion targeting was also a requirement for maximal FAK-dependent tyrosine phosphorylation of paxillin and FAK-related nonkinase (FRNK)-dependent inhibition of endogenous FAK function. However, there were additional requirements for these latter functions because we identified mutants that target to focal adhesions, yet are defective for the induction of paxillin phosphorylation or the dominant-negative function of FRNK. Furthermore, the paxillin-binding activity of FRNK mutants did not correlate with their ability to inhibit FAK, suggesting that FRNK has other targets in addition to paxillin.  相似文献   

19.
《The Journal of cell biology》1996,135(4):1109-1123
Paxillin is a 68-kD focal adhesion phosphoprotein that interacts with several proteins including members of the src family of tyrosine kinases, the transforming protein v-crk, and the cytoskeletal proteins vinculin and the tyrosine kinase, focal adhesion kinase (FAK). This suggests a function for paxillin as a molecular adaptor, responsible for the recruitment of structural and signaling molecules to focal adhesions. The current study defines the vinculin- and FAK-interaction domains on paxillin and identifies the principal paxillin focal adhesion targeting motif. Using truncation and deletion mutagenesis, we have localized the vinculin-binding site on paxillin to a contiguous stretch of 21 amino acids spanning residues 143-164. In contrast, maximal binding of FAK to paxillin requires, in addition to the region of paxillin spanning amino acids 143-164, a carboxyl-terminal domain encompassing residues 265-313. These data demonstrate the presence of a single binding site for vinculin, and at least two binding sites for FAK that are separated by an intervening stretch of 100 amino acids. Vinculin- and FAK-binding activities within amino acids 143-164 were separable since mutation of amino acid 151 from a negatively charged glutamic acid to the uncharged polar residue glutamine (E151Q) reduced binding of vinculin to paxillin by >90%, with no reduction in the binding capacity for FAK. The requirement for focal adhesion targeting of the vinculin- and FAK-binding regions within paxillin was determined by transfection into CHO.K1 fibroblasts. Significantly and surprisingly, paxillin constructs containing both deletion and point mutations that abrogate binding of FAK and/or vinculin were found to target effectively to focal adhesions. Additionally, expression of the amino-terminal 313 amino acids of paxillin containing intact vinculin- and FAK-binding domains failed to target to focal adhesions. This indicated other regions of paxillin were functioning as focal adhesion localization motifs. The carboxyl-terminal half of paxillin (amino acids 313-559) contains four contiguous double zinc finger LIM domains. Transfection analyses of sequential carboxyl-terminal truncations of the four individual LIM motifs and site-directed mutagenesis of LIM domains 1, 2, and 3, as well as deletion mutagenesis, revealed that the principal mechanism of targeting paxillin to focal adhesions is through LIM3. These data demonstrate that paxillin localizes to focal adhesions independent of interactions with vinculin and/or FAK, and represents the first definitive demonstration of LIM domains functioning as a primary determinant of protein subcellular localization to focal adhesions.  相似文献   

20.
ADP-ribosylation factor (Arf) family of small GTP-binding proteins plays a central role in membrane trafficking and cytoskeletal remodeling. ASAP1 (Arf-GAP containing SH3, ankyrin repeats, and PH domain) is a phospholipid-dependent Arf GTPase-activating protein (Arf-GAP) that binds to protein-tyrosine kinases Src and focal adhesion kinase. Using affinity chromatography and mass spectrometry (MS), we identified the adaptor protein CD2-associated protein (CD2AP) as a candidate binding partner of ASAP1. Both co-immunoprecipitation and GST pull-down experiments confirmed that CD2AP stably interacts with ASAP1 through its N-terminal SH3 domains. Using a mislocalization strategy, we show that sequestration of endogenous ASAP1 to mitochondria with a CD2AP SH3-mito fusion protein (the three N-terminal SH3 domains of CD2AP fused to Listeria monocytogenes ActA mitochondria-targeting sequence) inhibited REF52 cell spreading and migration in response to fibronectin stimulation. Using an alternative strategy we show that suppressing ASAP1 expression with small interfering RNA duplexes also significantly retarded cell spreading and inhibited cell migration. Furthermore, abrogation of ASAP1 function using either small interfering RNAs or mislocalization approaches caused an increase of GTP loading on Arf1 and loss of paxillin from adhesions. These results taken together with our previous observations that overexpression of ASAP1 inhibits cell spreading and alters paxillin localization to adhesions (Liu, Y., Loijens, J. C., Martin, K. H., Karginov, A. V., and Parsons, J. T. (2002) Mol. Biol. Cell. 13, 2147-2156) suggest that the recruitment of certain adhesion components such as paxillin requires dynamic GTP/GDP turnover of Arf1 GTPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号