共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Christoph F. Beck Hilary Moyed John L. Ingraham 《Molecular & general genetics : MGG》1980,179(2):453-455
Summary Using a set of overlapping deletion mutants in the tetracycline-resistance transposon Tn10, it has been established that certain regions of the Tn10 genome exert a powerful inhibition on translocation of an intact Tn10 element into the bacterial genome. Such inhibition is strongly temperature dependent: at 37° C translocation is inhibited by at least a factor of 100; no inhibition of translocation is detected at 30° C. 相似文献
3.
4.
Genetic organization of transposon Tn10 总被引:60,自引:0,他引:60
Transposon Tn10 is 9300 bp in length, with 1400 bp inverted repeats at its ends. The inverted repeats are structurally intact IS-like sequences (Ross et al., 1979). Analysis of deletion mutants and structural variants of Tn10, reported below, shows that the two IS10 segments contain all of the Tn10-encoded genetic determinants, both sites and functions, that are required for transposition. Furthermore, the two repeats (IS10-Right and IS10-Left) are not functionally equivalent: IS10-Right is fully functional and is capable by itself of promoting normal levels of Tn10 transposition; IS10-Left functions only poorly by itself, promoting transposition at a very low level when IS10-Right is inactivated. Complementation analysis shows that IS10-Right encodes at least one function, required for Tn10 transposition, which can act in trans and which works at the ends of the element. Also, all of the sites specifically required for normal Tn10 transposition have been localized to the outermost 70 bp at each end of the element; there is no evidence that specific sites internal to the element play an essential role. Finally, Tn10 modulates its own transposition in such a way that transposition-defective point mutants, unlike deletion mutants, are not complemented by functions provided in trans; and wild-type Tn10, unlike deletion mutants, is not affected by functions provided in trans from a "high hopper" Tn10 element. 相似文献
5.
lacZ translation initiation mutations 总被引:32,自引:0,他引:32
6.
7.
In bacteria, initiation of translation is kinetically controlled by factors IF1, IF2, and IF3, which work in conjunction with the 30S subunit to ensure accurate selection of the initiator tRNA (fMet-tRNA(fMet)) and the start codon. Here, we show that mutations G1338A and A790G of 16S rRNA decrease initiation fidelity in vivo and do so in distinct ways. Mutation G1338A increases the affinity of tRNA(fMet) for the 30S subunit, suggesting that G1338 normally forms a suboptimal Type II interaction with fMet-tRNA(fMet). By stabilizing fMet-tRNA(fMet) in the preinitiation complex, G1338A may partially compensate for mismatches in the codon-anti-codon helix and thereby increase spurious initiation. Unlike G1338A, A790G decreases the affinity of IF3 for the 30S subunit. This may indirectly stabilize fMet-tRNA(fMet) in the preinitiation complex and/or promote premature docking of the 50S subunit, resulting in increased levels of spurious initiation. 相似文献
8.
recA-dependent genetic switch generated by transposon Tn10 总被引:8,自引:0,他引:8
We describe a new type of regulatory switch generated in bacteriophage lambda by transposon Tn10. By this switch, phage genes alternate reversibly between expressed and non-expressed states as the direct consequence of a reversible DNA rearrangement. The switch itself has arisen via Tn10-promoted recombination. The subsequent “flip-flop” in gene expression occurs by general recombination between two IS10 elements serving as “portable regions of homology”. 相似文献
9.
Transposon mutagenesis was employed to isolate the gene(s) related with the biosynthesis of dipeptide antibiotic in Bacillus subtilis PY79 (a prototrophic derivative of the standard 168 strain). The blocked mutants were phenotypically selected from the transposon library by bioassay and the complete loss of biosynthetic ability was verified through ESI-mass spectrometry analysis. Four different bacilysin nonproducer mutants (Bac(-)::Tn10(ori-spc)) were isolated from the transposon library. The genes involved in bacilysin biosynthesis were identified as thyA (thymidilate synthetase), ybgG (unknown; similar to homocysteine methyl transferase) and oppA (oligopeptide permease), respectively. The other blocked gene was yvgW (unknown; similar to heavy metal-transporting ATPase); however, backcross studies did not verify its involvement in bacilysin biosynthesis. This gene, on the other hand, appeared to be necessary for efficient sporulation and transformation. Opp involvement was significant as it suggested that bacilysin biosynthesis is under or a component of the quorum sensing pathway which has been shown to be responsible for the establishment of sporulation, competence development and onset of surfactin biosynthesis. For verification, it was necessary to check the involvement of peptide pheromones (PhrA or PhrC) internalized by the Opp system and response regulator ComA as the essential components of this global control. phrA, phrC and comA deleted mutants of PY79 were thus constructed and the latter two genes were shown to be essential for bacilysin biosynthesis. 相似文献
10.
11.
Precise excision of transposon Tn10 results in reversion of the Trp- phenotype to Trp+ in a trp-1014::Tn10 strain of Salmonella typhimurium, and also occurs at a markedly higher frequency in a strain carrying the temperature-sensitive polA7 allele. The frequency with which precise excision events occurs can be modified by the plating medium, results indicating that the great majority of mutants which arise on broth-supplemented or tryptophan-supplemented minimal media actually arise on the selective plating medium. Trp+ revertants (1000) arising from excision of Tn10 were purified by re-streaking for single colonies; none were found to retain the Tn10 encoded resistance to tetracycline. Yields of Trp+ revertants of the polA7 strain were consistently higher when glycerol rather than glucose was used as sole carbon source in the selective medium. Clean excision of Tn10 can also be increased by ultraviolet irradiation in (R) plasmid-free strains, and is further increased in strains carrying an N-group plasmid (R205, R46 or pKM101). Ultraviolet-induced precise excision of Tn10 also occurs at a much enhanced frequency in a strain with a deletion through the uvrB gene; in this case, however, the addition of plasmid pKM101 leads to a decrease in yields of ultraviolet-induced precise excision events. 相似文献
12.
Analysis of the complete nucleotide sequence of the tetracycline-resistance transposon Tn10 总被引:1,自引:0,他引:1
An analysis of the complete nucleotide sequence of the composite tetracycline-resistance transposon Tn10 (9147 bp) from the Salmonella typhi conjugative plasmid R27 is presented. A comparison of the protein sequences from IS10-right and IS10-left transposases has identified four amino acid differences. These residues appear to play an important role in normal transposase function and may account for the differences in exhibited transposition activities. The tetracycline determinants encoded by this version of Tn10 share >99% identity with those of Tn10(R100), demonstrating the conservation that exists between these transposons. A previously uncharacterized approximately 3000-bp region of Tn10 contains four putative open reading frames. One of these open reading frames shares 55% identity with the glutamate permease protein sequence from Haemophilus influenzae although it was unable to complement an Escherichia coli glutamate permease mutant, with which it shares 51% identity. The three remaining putative open reading frames are arranged as a discrete genetic unit adjacent to the glutamate permease homolog and are transcribed in the opposite direction. Two of these open reading frames are homologous with Bacillus subtilis proteins of unknown functions while the other has no homologs in the database. The presence of an aminoacyl-tRNA synthetase class II motif in one of these open reading frames in combination with the glutamate permease homolog allows us to postulate that this region of Tn10 could once have played a role in amino acid metabolism. 相似文献
13.
14.
Location of ribosome-binding sites on the tetracycline resistance transposon Tn10. 总被引:1,自引:0,他引:1 下载免费PDF全文
Eight ribosome-binding sites were located on the single-stranded Tn10 DNA loop which was formed after denaturation of lambda phage DNA containing the Tn10 transposon sequence. Ribosomes were bound only to the Tn10 loop contained on the R strand of lambda DNA but not to that on the L strand, suggesting that one of the two strands of Tn10 DNA is selectively transcribed. Six of the eight ribosome binding sites were located in one-half of the DNA loop. The maximum sizes of potential polypeptides were calculated for these genes to range between 9,500 and 84,000 daltons. 相似文献
15.
An experimental analysis of the fate of transposon Tn10 after excision from a proA::Tn10 site localized on the plasmid F' leads to the conclusions: 1. The precise excision is a progressive process. Its probability is estimated per time unit. 2. An excised Tn10 is always integrated into a different genetic locus. 2. An excised Tn10 is always integrated into a different genetic locus. 3. The kinetics of postexcision transposition are sometimes very slow. The excised transposon is inherited in one cell line in spite of cell multiplication. 4. The processes of excision and secondary insertion have no absolute requirement for the recA+ genotype but they are strongly enhanced in recA+ cells. 5. The kinetics of postexcision transposition are strongly dependent on the genetic site from which the transposon was excised. 6. The probability of postexcision transposition is fully determined by the probability of excision and depends on the genotype of the host and many other factors. 相似文献
16.
Summary Mutations in and near the Salmonella typhimurium histidine transport operon were generated by insertion of the translocatable tetracycline-resistance element Tn10. Deletion mutants affecting histidine transport genes were subsequently isolated in several of the Tn10-containing strains. Tn10 insertions in hisJ occurred preferentially at one site, designated site A. This same site was also the preferential endpoint of deletions originating from Tn10 insertions at two neighboring sites. Thus, Tn10 insertion and Tn10-stimulated deletion formation appear to involve a common DNA-recogition step. 相似文献
17.
IS10/Tn10 transposition efficiently accommodates diverse transposon end configurations. 总被引:6,自引:1,他引:6 下载免费PDF全文
Transposon Tn10 and its component insertion sequence IS10 move by non-replicative transposition. We have studied the array of reaction intermediates and products in a high efficiency in vitro IS10/Tn10 transposition reaction. Synapsis of two transposon ends, followed by cleavage and strand transfer, can occur very efficiently irrespective of the relative locations and orientations of the two ends. The two participating ends can occur in inverted or direct orientation on the same molecule or, most importantly, on two different molecules. This behavior contrasts sharply with that of Mu, in which transposition is strongly biased in favor of inverted repeat synapsis. Mechanistically, the absence of discrimination amongst various end configurations implies that the architecture within the IS10/Tn10 synaptic complex is relatively simple, i.e. lacking any significant intertwining of component DNA strands. Biologically these observations are important because they suggest that the IS10 insertion sequence module has considerable flexibility in the types of DNA rearrangements that it can promote. Most importantly, it now seems highly probable that a single non-replicative IS10 element can promote DNA rearrangements usually attributed to replicative transposition, i.e. adjacent deletions and cointegrates, by utilizing transposon ends on two sister chromosomes. Other events which probably also contribute to the diversity of IS10/Tn10-promoted rearrangements are discussed. 相似文献
18.
19.
Translocatable drug-resistance element (transposon) Tn5 was transferred through conjugation from its carrier suicidal plasmid pJB4JI, harbored byEscherichia coli, toErwinia herbicola. The frequencies of transfer ranged from 0.4×10–8 to 26×10–8 per recipient cell. Membrane filter mating yielded more transconjugants than the spread plate technique. Several insertion mutations resulting in loss of bacteriocinogenicity were detected. The location of Tn5 in the mutant genomes was determined by Southern blot hybridization using Tn5-containing pRZ102 as the32P-labelled probe. The resulting autoradiogram showed specific hybridization with a 96 megadalton plasmid in nine mutants ofErwinia herbicola out of ten tested. However, in one mutant, the 96 megadalton plasmid was missing; instead a larger plasmid containing Tn5 was apparent which was not present in the original strain. This plasmid may have arisen by dimerization of the 96 megadalton plasmid as a result of Tn5 insertion. Using this method, we show that the insertion of Tn5 in that plasmid may have caused the loss of bacteriocinogenicity. The potential usefulness of this technique in genetic analyses of otherErwinia species and other phytobacteria is discussed. 相似文献
20.
Detection and characterization of Tn2501, a transposon included within the lactose transposon Tn951 下载免费PDF全文
The DNA sequence spanning coordinates 9.9 to 16.4 kilobases of the lactose transposon Tn951 ( Cornelis et al., Mol. Gen. Genet. 160:215-224, 1978) constitutes a transposable element by itself. Unlike Tn951 ( Cornelis et al., Mol. Gen. Genet. 184:241-248, 1981), this element, called Tn2501 , transposes in the absence of any other transposon. Transposition of Tn2501 proceeds through transient cointegration and duplicates 5 base pairs of host DNA. Tn2501 is flanked by nearly perfect inverted repeats (44 of 48), related to the inverted repeats of Tn21 ( Zheng et al., Nucleic Acids Res. 9:6265-6278, 1982). Unlike Tn21 , Tn2501 does not confer mercury resistance. 相似文献