首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously we reported that a mutant of Corynebacterium glutamicum ATCC14067 with reduced H+-ATPase activity, F172-8, showed an approximately two times higher specific rate of glucose consumption than the parent, but no glutamic acid productivity under the standard biotin-limited culture conditions, where biotin concentration was set at 5.5 microg/l in the production medium (Sekine et al., Appl. Microbiol. Biotechnol., 57, 534-540 (2001)). In this study, various culture conditions were tested to check the glutamic acid productivity of strain F172-8. The mutant was found to produce glutamic acid under exhaustive biotin limitation, where the biotin concentration of the medium was set at 2.5 microg/l with much smaller inoculum size. When strain F172-8 was cultured under the same biotin-limited conditions using a jar fermentor, 53.7 g/l of glutamic acid was produced from 100 g/l glucose, while the parent produced 34.9 g/l of glutamic acid in a medium with 5.5 microg/l biotin. The glutamic acid yield of strain F172-8 also increased under Tween 40-triggered production conditions (1.2-fold higher than the parent strain). The amounts of biotin-binding enzymes were investigated by Western blot analysis. As compared to the parent, the amount of pyruvate carboxylase was lower in the mutant; however, the amount of acetyl-CoA carboxylase did not significantly change under the glutamic acid production conditions. To the best of our knowledge, this is the first report showing that the H+-ATPase-defective mutant of C. glutamicum is useful in glutamic acid production.  相似文献   

2.
We have reported increased glutamate production by a mutant of Corynebacterium glutamicum ATCC14067 (strain F172-8) with reduced H(+)-ATPase activity under biotin-limiting culture conditions (Aoki et al. Biosci. Biotechnol. Biochem., 69, 1466-1472 (2005)). In the present study, we examined valine production by an H(+)-ATPase-defective mutant of C. glutamicum. Using the double-crossover chromosome replacement technique, we constructed a newly defined H(+)-ATPase-defective mutant from ATCC13032. After transforming the new strain (A-1) with a C-terminal truncation of acetohydroxyacid synthase gene (ilvBN), valine production increased from 21.7 mM for the wild-type strain to 46.7 mM for the A-1 in shaking flask cultures with 555 mM glucose. Increased production of the valine intermediate acetoin was also observed in A-1, and was reduced by inserting acetohydroxyacid isomeroreductase gene (ilvC) into the ilvBN plasmid. After transformation with this new construct, valine production increased from 38.3 mM for the wild-type strain to 95.7 mM for A-1 strain. To the best of our knowledge, this is the first report indicating that an H(+)-ATPase-defective mutant of C. glutamicum is capable of valine production. Our combined results with glutamate and valine suggest that the H(+)-ATPase defect is also effective in the fermentative production of other practical compounds.  相似文献   

3.
Glutamic acid production with gel-entrapped Corynebacterium glutamicum   总被引:1,自引:0,他引:1  
A glutamic acid producing microorganism (Corynebacterium glutamicum) is entrapped in a polyacrylamide gel. These immobilized microorganisms were used to produce glutamic acid in successive batches of fresh medium. Free microorganisms similarly used produced much less glutamic acid under similar conditions.  相似文献   

4.
To improve glutamic acid production from Corynebacterium glutamicum 2262 using date juice, a culture medium was screened and optimized using the statistical experimental designs of Plackett-Burman and response-surface methodology. In the first step, a two-level Plackett-Burman design was adopted to select the most important nutrients influencing the glutamic acid production, which showed that the date juice sugars, urea, peptone, and glycine betaine were the most significant ingredients (P < 0.05). Finally, response surface Box-Behnken design was employed to develop a mathematical model to identify the optimum concentrations of key components for higher glutamic acid production, which revealed the following: date juice (45 g/L), urea (16.9 g/L), peptone (15 g/L), and glycine betaine (12 g/L). The high correlation between the predicted and observed values indicated the validity of the model. Glutamic acid concentration increased significantly with optimized medium (33.2 g/L) when compared with non-optimized medium (12 g/L).  相似文献   

5.
Corynebacterium glutamicum, an established industrial amino acid producer, has been genetically modified for efficient succinate production from the renewable carbon source glucose under fully aerobic conditions in minimal medium. The initial deletion of the succinate dehydrogenase genes (sdhCAB) led to an accumulation of 4.7 g l?1 (40 mM) succinate as well as high amounts of acetate (125 mM) as by‐product. By deleting genes for all known acetate‐producing pathways (ptaackA, pqo and cat) acetate production could be strongly reduced by 83% and succinate production increased up to 7.8 g l?1 (66 mM). Whereas overexpression of the glyoxylate shunt genes (aceA and aceB) or overproduction of the anaplerotic enzyme pyruvate carboxylase (PCx) had only minor effects on succinate production, simultaneous overproduction of pyruvate carboxylase and PEP carboxylase resulted in a strain that produced 9.7 g l?1 (82 mM) succinate with a specific productivity of 1.60 mmol g (cdw)?1 h?1. This value represents the highest productivity among currently described aerobic bacterial succinate producers. Optimization of the production conditions by decoupling succinate production from cell growth using the most advanced producer strain (C. glutamicumΔpqoΔpta‐ackAΔsdhCABΔcat/pAN6‐pycP458Sppc) led to an additional increase of the product yield to 0.45 mol succinate mol?1 glucose and a titre of 10.6 g l?1 (90 mM) succinate.  相似文献   

6.
The production of L-glutamic acid with Corynebacterium glutamicum under biotin limitation was studied. Assuming a formal type of cell maturation, an adequate formal kinetic model was developed. This model includes growth, dependent on biotin, and uses the same retention term for describing the lag phase and cell maturation. Special attention was paid to the graphical interpretation of the performance between the variables, which is relevant for kinetics. Comparison between experiments and the model resulted in different degrees of agreement. However, the main trend of the experimental patterns of the complex bioprocess can clearly be mirrored in this model.  相似文献   

7.
8.
The study was aimed at evaluating the extent of flux control exercised by the amino acid excretion step on the glutamate production flux in C. glutamicum 2262 strain that is induced for glutamate excretion by an upward temperature shift. Cells initially induced to excrete glutamate were cultivated at different controlled temperatures between 33 and 40 degrees C, and changes in glutamate excretion flux and intracellular concentration were determined in response to increased culture temperature. The fastest growth rate of 0.45 h(-1) and the lowest glutamate excretion rate of 1 mmole/g dw x h were observed at 33 degrees C, together with a high intracellular 0.5 mmole/g dw glutamate accumulation. On the contrary, the fastest glutamate excretion rate of 6 mmole/g dw x h was obtained at 40 degrees C, when cell growth was arrested and the internal glutamate level reduced to 0.25 mmol/g dw. The observed sixfold increase in excretion flux as a result of the temperature increase clearly suggests a specific effect of temperature on the glutamate export system which appears as the major kinetic bottleneck for the glutamate production flux. This conclusion is corroborated by the high internal accumulation of glutamate which, even under the fastest excretion conditions, severely inhibits the activity of the glutamate biosynthesis pathway.  相似文献   

9.
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Km(r)). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum DeltailvA DeltapanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.  相似文献   

10.
11.
Production of L-glutamic acid with Corynebacterium glutamicum, under biotin limitation was studied. On the base of formal kinetic approach, a mathematical model was developed, which included formal growth inhibition with product, and production repression with substrate. For the testing of computer simulations experiments were carried out and the results have been compared.  相似文献   

12.
To give clues about the respective importance of phosphoenol-pyruvate carboxylase (PEPc) and pyruvate carboxylase (Pc) in Corynebacterium glutamicum metabolism during a temperature triggered glutamic acid fermentation, PEPc activity was genetically amplified and Pc activity was suppressed by biotin limitation in the culture medium. In absence of Pc activity, glutamate production was dramatically reduced whereas lactate excretion was strongly increased. Whereas PEPc amplification in excess of biotin (4 mg/L) only slightly modified the cell kinetics, under biotin limiting conditions this amplification strongly improved the glutamate production (4 microg/L). When Pc was absent, PEPc activity was sufficient to allow up to 70% of the maximal glutamate production rate and seemed to have an important anaplerotic role, especially at the beginning of the production phase. In contrast, Pc was predominant during the remainder of the glutamate fermentation.  相似文献   

13.
The shortage of oil resources, the steadily rising oil prices and the impact of its use on the environment evokes an increasing political, industrial and technical interest for development of safe and efficient processes for the production of chemicals from renewable biomass. Thus, microbial fermentation of renewable feedstocks found its way in white biotechnology, complementing more and more traditional crude oil-based chemical processes. Rational strain design of appropriate microorganisms has become possible due to steadily increasing knowledge on metabolism and pathway regulation of industrially relevant organisms and, aside from process engineering and optimization, has an outstanding impact on improving the performance of such hosts. Corynebacterium glutamicum is well known as workhorse for the industrial production of numerous amino acids. However, recent studies also explored the usefulness of this organism for the production of several organic acids and great efforts have been made for improvement of the performance. This review summarizes the current knowledge and recent achievements on metabolic engineering approaches to tailor C. glutamicum for the bio-based production of organic acids. We focus here on the fermentative production of pyruvate, l-and d-lactate, 2-ketoisovalerate, 2-ketoglutarate, and succinate. These organic acids represent a class of compounds with manifold application ranges, e.g. in pharmaceutical and cosmetics industry, as food additives, and economically very interesting, as precursors for a variety of bulk chemicals and commercially important polymers.Funding Information Work in the laboratories of the authors was supported by the Fachagentur Nachwachsende Rohstoffe (FNR) of the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV; FNR Grants 220-095-08A and 220-095-08D; Bio-ProChemBB project, ERA-IB programme), by the Deutsche Bundesstiftung Umwelt (DBU Grant AZ13040/05) and the Evonik Degussa AG.  相似文献   

14.
15.
16.
The composition of the respiratory chains of the wild stain Corynebacterium glutamicum and of its mutant differing in their ability for the glutamic acid oversynthesis in a medium with melassa was studied. Under excess of biotine and the parent strain is incapable of acid oversynthesis, while the mutant forms and excretes the acid. Both bacterial strains contain menaquinone and equal sets of cytochromes C550, b556, b563, and a600. The membrane-bound dehydrogenases of the parent strain are represented by NADH-, NADPH- and succinate dehydrogenases. Unlike the parent strain, the mutant membrane preparation does not oxidize NADPH. Both strains do not practically differ in their menaquinone content. The cyanide-resistant oxidase of a non-cytochrome nature appears in the wild strain during its transfer to the stationary growth phase. Induction of glutamic acid oversnythesis by addition of penicilline prevents the formation of the cyanide-resistant oxidase. On the contrary, the mutant transfer to the stationary growth phase is not accompanied by a formation of cyanide-resistant oxidase, which appears only after cessation of glutamic acid oversynthesis. Induction of the cyanide-resistant respiration by addition of cyanide inhibits the acid oversynthesis. Oxidation of substrates by membrane preparations of both bacterial strains in the absence and presence of cyanide is not followed by the hydrogen peroxide formation. It is assumed that there exist competitive interactions between the supersynthesis of glutamic acid and the cyanide-resistant respiration. The possible structure of the respiratory chain of Cor. glutamicum is discussed.  相似文献   

17.
A discontinuous lactate dehydrogenase coupled assay is described for the evaluation of the pyruvate carboxylase activity (Pc, EC 6.4.1.1) in a glutamate overproducing strain of Corynebacterium glutamicum. After an initial permeabilisation period of the cells, the method consisted of the fluorometric determination of the remaining pyruvate level after transformation into oxaloacetate by the endogenous Pc. The assay was demonstrated to be powerful and enabled the determination of the C. glutamicum Pc activity grown on different carbon sources. Besides, this method was used to assay Pc activity in C. glutamicum 2262 during a temperature triggered glutamate producing process with biotin excess or limitation.  相似文献   

18.
19.
L Yin  X Hu  D Xu  J Ning  J Chen  X Wang 《Metabolic engineering》2012,14(5):542-550
Threonine dehydratase and acetohydroxy acid synthase are critical enzymes in the l-isoleucine biosynthesis pathway of Corynebacterium glutamicum, but their activities are usually feedback-inhibited. In this study, we characterized a feedback-resistant threonine dehydratase and an acetohydroxy acid synthase from an l-isoleucine producing strain C. glutamicum JHI3-156. Sequence analysis showed that there was only a single amino acid substitution (Phe383Val) in the feedback-resistant threonine dehydratase, and there were three mutated amino acids (Pro176Ser, Asp426Glu, and Leu575Trp) in the big subunit of feedback-resistant acetohydroxy acid synthase. The mutated threonine dehydratase over-expressed in E. coli not only showed completely resistance to l-isoleucine inhibition, but also showed enhanced activity. The mutated acetohydroxy acid synthase over-expressed in E. coli showed more resistance to l-isoleucine inhibition than the wild type. Over-expression of the feedback-resistant threonine dehydratase or acetohydroxy acid synthase in C. glutamicum JHI3-156 led to increase of l-isoleucine production; co-expression of them in C. glutamicum JHI3-156 led to 131.7% increase in flask cultivation, and could produce 30.7g/L l-isoleucine in 72-h fed-batch fermentation. These results would be useful to enhance l-isoleucine production in C. glutamicum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号