首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taking as starting point the complete analysis of mean residence times in linear compartmental systems performed by Garcia-Meseguer et al. (Bull. Math. Biol. 65:279–308, 2003) as well as the fact that enzyme systems, in which the interconversions between the different enzyme species involved are of first or pseudofirst order, act as linear compartmental systems, we hereby carry out a complete analysis of the mean lifetime that the enzyme molecules spend as part of the enzyme species, forms, or groups involved in an enzyme reaction mechanism. The formulas to evaluate these times are given as a function of the individual rate constants and the initial concentrations of the involved species at the onset of the reaction. We apply the results to unstable enzyme systems and support the results by using a concrete example of such systems. The practicality of obtaining the mean times and their possible application in a kinetic data analysis is discussed.  相似文献   

2.
A three-dimensional solubility parameter approach to nonaqueous enzymology   总被引:1,自引:0,他引:1  
Widespread commercial application of enzymes as catalysts for specialty or commodity chemical synthesis will require their use in nonaqueous systems. While a number of non-aqueous enzyme applications have been demonstrated, the lack of useful rules for predicting enzyme-solvent interactions has hindered the development of this technology. Both Hildebrand and solvent hydrophobicity (octanol-water partition coefficient) parameters have been used previously to correlate and predict enzyme activity in nonaqueous systems, with some success, but any single-parameter approach is inherently limited in its ability to reflect the spectrum of possible enzyme-solvent interactions. Therefore, this study evaluates the three-dimensional solubility parameter space, as proposed by Hansen, to correlate and predict enzyme activity in microaqueous, miscible, and biphasic nonaqueous systems. Preliminary results suggest that Hansen parameters may be useful for correlating nonaqueous enzyme activity, and that the dispersive and polar parameters may be disproportionately important in single-phase microaqueous systems. The Hansen hydrogen-bonding parameter appears to be the only parameter yet evaluated capable of correlating the water requirement for enzyme activity in microaqueous systems, suggesting that water affects protein structure through enthalpic rather than entropic processes in nonaqueous systems. Insufficient data are available for miscible and biphasic systems, but it is proposed that enzyme activity may correlate with the average solubility parameters of miscible systems and of the aqueous phase in biphasic systems.  相似文献   

3.
The steady state enzyme kinetics of those systems are discussed, which involve three species binding to enzymes. Two specific systems are considered. In one system, all three species bind only once to the enzyme. In the other system, two species bind once and one binds twice to the enzyme. The species are labeled S, A and B. The general case is considered, in which all possible complexes involving enzyme E and species S generate product P. Species A and B may become co-substrates, activators or inhibitors. The steady state enzyme kinetic equations for the general case for both systems are presented. These equations are further discussed for a number of special cases, which may be of interest to enzymologists and others using enzymes.  相似文献   

4.
The main drawback when using aqueous two-phase systems for macromolecule purification is the high cost of most polymers used. The purification of an enzyme, alcohol dehydrogenase, from a crude extract of Saccharomyces cerevisiae was tested in systems composed of poly(ethylene glycol) and a crude hydroxypropyl starch or Reppal PES 100, a purified fraction of hydroxypropyl starch. Purification factors measured for the enzyme were very similar in both systems (between 0.8 and 1.4 for both systems in the upper phase). However, systems composed of Reppal PES present a greater recovery of enzyme, between 77% and 100% versus 60% and 100%, while systems composed of crude hydroxypropyl starch exhibit a larger Δlog K for the tested ligand, 1.26 versus 0.81.  相似文献   

5.
Biocatalysis, the use of enzymes in chemical transformations, is an important green chemistry tool. Cascade reactions combine different enzyme activities in a sequential set of reactions. Cascades can occur within a living (usually bacterial) cell; in vitro in ‘one pot’ systems where the desired enzymes are mixed together to carry out the multi-enzyme reaction; or using microfluidic systems. Microfluidics offers particular advantages when the product of the reaction inhibits the enzyme(s). In vitro systems allow variation of different enzyme concentrations to optimise the metabolic ‘flux’, and the addition of enzyme cofactors as required. Cascades including cofactor recycling systems and modelling approaches are being developed to optimise cascades for wider industrial scale use. Two industrially important enzymes, transaminases and carboxylic acid reductases are used as examples regarding their applications in cascade reactions with other enzyme classes to obtain important synthons of pharmaceutical interest.  相似文献   

6.
7.
The action of enzymes on soluble and insoluble substrate biopolymers is discussed, taking into account enzyme diffusion along the biopolymer “surface” and interaction with interspersed ligand groups that may be modified by the action of the enzyme. It is shown that movement of the enzyme under trhe combined effect of these two processes can be described as a diffusion process characterized by an apparent diffusion coefficient that generally depends on both time and position. Equations describing the system are formulated and some specific examples analyzed in terms of analytical or numerical solutions. The concentration distributions of both the enzyme and the substrate (or product ) were obtained for different systems for which the apparent diffusion coefficient is a function of time only, as well as of both time and position. The relevance of the formulation, as developed, to systems in which reduction in dimensionality leads to enhanced enzyme efficiency is discussed, and possible uses of the theory in studies of biopolymer structure and enzyme-biopolymer interactions are suggested.  相似文献   

8.
Ultraviolet radiation causes lesions in bacterial DNA which are repaired by several enzyme systems. Wide variations in the efficiency of repair for differentE. Coli strains are inadequately explained by a simple presence or absence of one or more repair systems. It is proposed that a major factor in the variations is the sensitivity of the repair systems themselves to ultraviolet induced interactions between proteins and the repair enzyme cistrons. An analytic approach is applied to pre-existing data to establish the numbers of thymine and cytosine bases in the repair cistrons, lending support to the model. The findings imply that bacteria will become sensitive to UV upon inhibition of one of four amino acids.  相似文献   

9.
One of the important strategies for modulating enzyme activity is the use of additives to affect their microenvironment and subsequently make them suitable for use in different industrial processes. Ionic liquids (ILs) have been investigated extensively in recent years as such additives. They are a class of solvents with peculiar properties and a "green" reputation in comparison to classical organic solvents. ILs as co-solvents in aqueous systems have an effect on substrate solubility, enzyme structure and on enzyme–water interactions. These effects can lead to higher reaction yields, improved selectivity, and changes in substrate specificity, and thus there is great potential for IL incorporation in biocatalysis. The use of surfactants, which are usually denaturating agents, as additives in enzymatic reactions is less reviewed in recent years. However, interesting modulations in enzyme activity in their presence have been reported. In the case of surfactants there is a more pronounced effect on the enzyme structure, as can be observed in a number of crystal structures obtained in their presence. For each additive and enzymatic process, a specific optimization process is needed and there is no one-fits-all solution. Combining ILs and surfactants in either mixed micelles or water-in-IL microemulsions for use in enzymatic reaction systems is a promising direction which may further expand the range of enzyme applications in industrial processes. While many reviews exist on the use of ILs in biocatalysis, the present review centers on systems in which ILs or surfactants were able to modulate and improve the natural activity of enzymes in aqueous systems.  相似文献   

10.
This paper reviews the enzymology of microbial degradation of chlorinated phenols, a significant group of dangerous environmental pollutants. Two groups of phenol hydroxylases responsible for hydroxylation of (halo)phenols in the ortho or para position have been described. Among ortho-hydroxylating phenol hydroxylases, one-component flavoproteins or multicomponent enzyme systems are recognized, whereas single- or two-component enzyme systems catalyze para-hydroxylation of halophenols.  相似文献   

11.
12.
Ca2+ requirement for protein kinase C activation is a matter of controversy. In this report we have examined Ca2+ dependency of the reaction in different assay systems and shown that the enzyme response to Ca2+, as well as diacylglycerol, depends upon phospholipid species, protein substrate and lipid conformation (micelles or sonicates). These results emphasize that the enzyme characteristics as defined in reconstituted membrane systems may not have a physiological relevance.  相似文献   

13.
The feautres of kinetic behavior of dissociating enzyme systems for which the rate of equilibrium between the oligomeric forms is slow in comparison with the rate of the enzymatic process are discussed. It is shown that in slowly dissociating enzyme system of the type Np in equilibrium P (P is the enzyme oligomer, and p is the subunit: N greater than or equal to2) in which P and p forms differ by the character of allosteric interaction between the active and allosteric sites the plots of the initial reaction rate (v) versus substrate (S) or effector (F) concentration may be a very complicated shape. In similar systems the v versus [S]0 plots may have intermediate plateau, maximum and minimum simultaneously, sigmoidality followed by intermediate plateau and so on, and the v versus [F]0 plots may have intermediate plateau.  相似文献   

14.
Sulfation, catalyzed by members of the sulfotransferase enzyme family, is a major metabolic pathway which modulates the biological activity of numerous endogenous and xenobiotic chemicals. A number of these enzymes have been expressed in prokaryotic and eukaryotic systems to produce protein for biochemical and physical characterization. However, the effective use of heterologous expression systems to produce recombinant enzymes for such purposes depends upon the expressed protein faithfully representing the "native" protein. For human sulfotransferases, little attention has been paid to this despite the widespread use of recombinant enzymes. Here we have validated a number of heterologous expression systems for producing the human dopamine-metabolizing sulfotransferase SULT1A3, including Escherichia coli, Saccharomyces cerevisiae, COS-7, and V79 cells, by comparison of Km values of the recombinant enzyme in cell extracts with enzyme present in human platelets and with recombinant enzyme purified to homogeneity following E. coli expression. This is the first report of heterologous expression of a cytosolic sulfotransferase in yeast. Expression of SULT1A3 was achieved in all cell types, and the Km for dopamine under the conditions applied was approximately 1 microM in all heterologous systems studied, which compared favorably with the value determined with human platelets. We also determined the subunit and native molecular weights of the purified recombinant enzyme by SDS-PAGE, electrospray ionization mass spectrometry, dynamic light scattering, and sedimentation analysis. The enzyme purified following expression in E. coli existed as a homodimer with Mr approximately 68,000 as determined by light scattering and sedimentation analysis. Mass spectrometry revealed two species with experimentally determined masses of 34,272 and 34,348 which correspond to the native protein with either one or two 2-mercaptoethanol adducts. We conclude that the enzyme expressed in prokaryotic and eukaryotic heterologous systems, and also purified from E. coli, equates to that which is found in human tissue preparations.  相似文献   

15.
BackgroundHexokinase and glucokinase enzymes are ubiquitously expressed and use ATP and ADP as substrates in mammalian systems and a variety of polyphosphate substrates and/or ATP in some eukaryotic and microbial systems. Polyphosphate synthesising or utilizing enzymes are widely expressed in microbial systems but have not been reported in mammalian systems, despite the presence of polyphosphate in mammalian cells. Only two micro-organisms have previously been shown to express an enzyme that uses polyphosphate exclusively.MethodsA variety of experimental approaches, including NMR and NAD-linked assay systems were used to conduct a biochemical investigation of polyphosphate dependent glucokinase activity in mammalian tissues.ResultsA novel mammalian glucokinase, highly responsive to hexametaphosphate (HMP) but not ATP or ADP as a phosphoryl donor is present in the nuclei of mammalian hepatocytes. The liver enzyme exhibited sigmoidal kinetics with respect to glucose with a S0.5 of 12 mM, similar to the known kinetics of mammalian ATP-glucokinase. The Km for HMP (0.5 mM) was also similar to that of phosphoryl donors for mammalian ATP-glucokinases. The new enzyme was inhibited by several nucleotide phosphates.ConclusionsWe report the discovery of a polyphosphate-dependent enzyme system in mammalian cells with kinetics similar to established ATP-dependent glucokinase, also known to have a nuclear location. The kinetics suggest possible regulatory or redox protective roles.General significanceThe role of polyphosphate in mammalian systems has remained an enigma for decades, and the present report describes progress on the significance of this compound in intracellular metabolism in mammals.  相似文献   

16.
Assaying enzyme-catalyzed transformations in high-throughput is crucial to enzyme discovery, enzyme engineering and the drug discovery process. In enzyme assays, catalytic activity is detected using labelled substrates or indirect sensor systems that produce a detectable spectroscopic signal upon reaction. Recent advances in the development of high-throughput enzyme assays have identified new labels and chromophores to detect a wide range of enzymes activities. Enzyme activity profiling and fingerprinting have also been used as tools for identification and classification, while microarray formats have been devised to increase throughput.  相似文献   

17.
Stabilization and inhibition of hepatic microsomal glucose-6-P phosphohydrolase (EC 3.1.3.9) by F- requires the presence of Al3+ ions. At millimolar concentrations, reagent grade NaF inhibited glucose-6-P hydrolysis and protected the enzyme against inactivation induced by heat in the presence of 0.025% (w/v) Triton X-100 or by reaction of the catalytic site with the histidine-specific reagent, diethyl pyrocarbonate. The presence of millimolar EDTA in all test systems abolished the effectiveness of NaF, yet EDTA by itself was without significant influence on the kinetics of phosphohydrolase reaction, the thermal stability of the enzyme or its reactivity with diethyl pyrocarbonate. Although ultrapure NaF was ineffectual in all test systems, its potency as a competitive inhibitor or protective agent was markedly increased by micromolar AlCl3 or when assays were carried out in flint glass test tubes. The latter response is explained by the well documented ability of fluoride solutions to extract Al3+ from glass at neutral pH. Our analysis indicates that the effectiveness of fluoride in all test systems derives from the formation of a specific complex with Al3+, most likely Al(F)4-. The apparent dissociation constant for interaction of the enzyme and Al(F)4- is 0.1 microM. The combination of NaF and AlCl3 holds promise as an unusually effective and versatile means to stabilize this notoriously labile enzyme during efforts to purify it.  相似文献   

18.
Water is fundamental for enzyme action and for formation of the three-dimensional structure of proteins. Hence, it may be assumed that studies on the interplay between water and enzymes can yield insight into enzyme function and formation. This has proven correct, because the numerous studies that have been made on the behavior of water-soluble and membrane enzymes in systems with a low water content (reverse micelles or enzymes suspended in nonpolar organic solvents) have revealed properties of enzymes that are not easily appreciated in aqueous solutions. In the low water systems, it has been possible to probe the relation between solvent and enzyme kinetics, as well as some of the factors that affect enzyme thermostability and catalysis. Furthermore, the studies show that low water environments can be used to stabilize conformers that exhibit unsuspected catalytic properties, as well as intermediates of enzyme function and formation that in aqueous media have relatively short life-times. The structure of enzymes in these unnatural conditions is actively being explored.  相似文献   

19.
Recently, the area of model predictive modification of biochemical pathways has received attention with the aim to increase the productivity of microbial systems. In this study, we present a generalization of previous work, where, using a sensitivity study over the fermentation as a dynamic system, the optimal selection of reaction steps for modification (amplification or attenuation) is determined. The influence of metabolites in the activity of enzymes has also been considered (through activation or inhibition). We further introduce a new concept in the dynamic modeling of biochemical reaction systems including a generalized continuous superstructure in which two artificial multiplicative terms are included to account for: (a) enzyme overexpression or underexpression (attenuation or amplification) for the whole enzyme pool; and (b) modification of the apparent order of a kinetic expression with respect to the concentration of a metabolite or any subset of metabolites participating in the pathway. This new formulation allows the prediction of the sensitivity of the pathway performance index (objective function) with respect to the concentration of the enzyme, as well as the interaction of the enzyme with other metabolites. Using this framework, a case study for the production of penicillin V is analyzed, obtaining the most sensitive reaction steps (or bottlenecks) and the most significant regulations of the system, due to the effect of concentration of intracellular metabolites on the activity of each enzyme.  相似文献   

20.
Immobilization is a key technology for successful realization of enzyme‐based industrial processes, particularly for production of green and sustainable energy or chemicals from biomass‐derived catalytic conversion. Different methods to immobilize enzymes are critically reviewed. In principle, enzymes are immobilized via three major routes (i) binding to a support, (ii) encapsulation or entrapment, or (iii) cross‐linking (carrier free). As a result, immobilizing enzymes on certain supports can enhance storage and operational stability. In addition, recent breakthroughs in nano and hybrid technology have made various materials more affordable hosts for enzyme immobilization. This review discusses different approaches to improve enzyme stability in various materials such as nanoparticles, nanofibers, mesoporous materials, sol–gel silica, and alginate‐based microspheres. The advantages of stabilized enzyme systems are from its simple separation and ease recovery for reuse, while maintaining activity and selectivity. This review also considers the latest studies conducted on different enzymes immobilized on various support materials with immense potential for biosensor, antibiotic production, food industry, biodiesel production, and bioremediation, because stabilized enzyme systems are expected to be environmental friendly, inexpensive, and easy to use for enzyme‐based industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号