首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Poty- and picornaviruses share similar genome organizations and polyprotein processing strategies. By analogy to picornaviruses it has been proposed that the genome-linked protein VPg may serve as a primer for genome replication of potyviruses. The multifunctional VPg of potato virus A (PVA; genus Potyvirus) was found to be uridylylated by NIb, the RNA polymerase of PVA. The nucleotidylation activity of NIb is more efficient in the presence of Mn(2+) than Mg(2+) and does not require an RNA template. Our results suggest that the nucleotidylation reaction exhibits weak preference for UTP over the other NTPs. An NTP-binding experiment with oxidized [alpha-(32)P]UTP revealed that PVA VPg contains an NTP-binding site. Deletion of a 7-amino acid-long putative NTP-binding site from VPg reduced nucleotide-binding capacity and debilitated uridylylation reaction. These results provide evidence that VPg may play a similar role in RNA synthesis of potyviruses as it does in the case of picornaviruses.  相似文献   

2.
Small proteins called viral protein genome‐linked (VPg), attached to the 5′‐end of the viral RNA genome are found as common structure in the large family of picornaviruses. The replication of these viruses is primed by this VPg protein linked to a single uridylyl residue. We report a general procedure to obtain such nucleoproteins employing a pre‐uridylylated tyrosine building block in an on‐line solid phase‐based approach. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Genome replication in picornaviruses is catalyzed by a virally encoded RNA-dependent RNA polymerase, termed 3D. These viruses also use a small protein primer, named VPg, to initiate RNA replication. The recent explosion of structural information on picornaviral 3D polymerases has provided insights into the initiation of RNA synthesis and chain elongation. Comparing these data with results from previous structural analyses of viral RNA-dependent RNA polymerases that catalyze de novo RNA synthesis sheds light on the different strategies that these viruses use to initiate replication.  相似文献   

4.
The genome of feline calicivirus (FCV) is an approximately 7.7-kb single-stranded positive-sense RNA molecule that is polyadenylated at its 3' end and covalently linked to a VPg protein (calculated mass, 12.6 kDa) at its 5' end. We performed a mutational analysis of the VPg protein in order to identify amino acids potentially involved in linkage to the genome and replication. The tyrosine residues at positions 12, 24, 76, and 104 were changed to alanines by mutagenesis of an infectious FCV cDNA clone. Viruses were recovered when Tyr-12, Tyr-76, or Tyr-104 of the VPg protein was changed to alanine, but virus was not recovered when Tyr-24 was changed to alanine. Growth properties of the recovered viruses were similar to those of the parental virus. We examined whether the amino acids serine, threonine, and phenylalanine could substitute for the tyrosine at position 24, but these mutations were lethal as well. A tyrosine at this relative position is conserved among all calicivirus VPg proteins examined thus far, suggesting that the VPg protein of caliciviruses, like those of picornaviruses and potyviruses, utilizes tyrosine in the formation of a covalent bond with RNA.  相似文献   

5.
The RNA-dependent RNA polymerase (RdRp) is a central piece in the replication machinery of RNA viruses. In picornaviruses this essential RdRp activity also uridylates the VPg peptide, which then serves as a primer for RNA synthesis. Previous genetic, binding, and biochemical data have identified a VPg binding site on poliovirus RdRp and have shown that is was implicated in VPg uridylation. More recent structural studies have identified a topologically distinct site on the closely related foot-and-mouth disease virus RdRp supposed to be the actual VPg-primer-binding site. Here, we report the crystal structure at 2.5-Å resolution of active coxsackievirus B3 RdRp (also named 3Dpol) in a complex with VPg and a pyrophosphate. The pyrophosphate is situated in the active-site cavity, occupying a putative binding site either for the coproduct of the reaction or an incoming NTP. VPg is bound at the base of the thumb subdomain, providing first structural evidence for the VPg binding site previously identified by genetic and biochemical methods. The binding mode of VPg to CVB3 3Dpol at this site excludes its uridylation by the carrier 3Dpol. We suggest that VPg at this position is either uridylated by another 3Dpol molecule or that it plays a stabilizing role within the uridylation complex. The CVB3 3Dpol/VPg complex structure is expected to contribute to the understanding of the multicomponent VPg-uridylation complex essential for the initiation of genome replication of picornaviruses.  相似文献   

6.
The amino acid sequences deduced from the nucleic acid sequences of several animal picornaviruses and cowpea mosaic virus (CPMV), a plant virus, were compared. Good homology was found between CPMV and the picornaviruses in the region of the picornavirus 2C (P2-X protein), VPg, 3C pro (proteinase) and 3D pol (RNA polymerase) regions. The CPMV B genome was found to have a similar gene organization to the picornaviruses. A comparison of the 3C pro (proteinase) regions of all of the available picornavirus sequences and CPMV allowed us to identify residues that are completely conserved; of these only two residues, Cys-147 and His-161 (poliovirus proteinase) could be the reactive residues of the active site of a proteinase with analogous mechanism to a known proteinase. We conclude that the proteinases encoded by these viruses are probably cysteine proteinases, mechanistically related, but not homologous to papain.  相似文献   

7.
All picornaviruses have a protein, VPg, covalently linked to the 5'-ends of their genomes. Uridylylated VPg (VPg-pUpU) is thought to serve as the protein primer for RNA synthesis. VPg-pUpU can be produced in vitro by the viral polymerase, 3Dpol, in a reaction in which a single adenylate residue of a stem-loop structure, termed oriI, templates processive incorporation of UMP into VPg by using a "slide-back" mechanism. This reaction is greatly stimulated by viral precursor protein 3CD or its processed derivative, 3C; both contain RNA-binding and protease activities. We show that the 3C domain encodes specificity for oriI, and the 3D domain enhances the overall affinity for oriI. Thus, 3C(D) stimulation exhibits an RNA length dependence. By using a minimal system to evaluate the mechanism of VPg uridylylation, we show that the active complex contains polymerase, oriI, and 3C(D) at stoichiometry of 1:1:2. Dimerization of 3C(D) is supported by physical and structural data. Polymerase recruitment to and retention in this complex require a protein-protein interaction between the polymerase and 3C(D). Physical and functional data for this interaction are provided for three picornaviruses. VPg association with this complex is weak, suggesting that formation of a complex containing all necessary components of the reaction is rate-limiting for the reaction. We suggest that assembly of this complex in vivo would be facilitated by use of precursor proteins instead of processed proteins. These data provide a glimpse into the organization of the ribonucleoprotein complex that catalyzes this key step in picornavirus genome replication.  相似文献   

8.
Using poliovirus, the prototypic member of Picornaviridae, we have further characterized a host cell enzymatic activity found in uninfected cells, termed "unlinkase," that recognizes and cleaves the unique 5' tyrosyl-RNA phosphodiester bond found at the 5' end of picornavirus virion RNAs. This bond connects VPg, a viral-encoded protein primer essential for RNA replication, to the viral RNA; it is cleaved from virion RNA prior to its engaging in protein synthesis as mRNA. Due to VPg retention on nascent RNA strands and replication templates, but not on viral mRNA, we hypothesize that picornaviruses utilize unlinkase activity as a means of controlling the ratio of viral RNAs that are translated versus those that either serve as RNA replication templates or are encapsidated. To test our hypothesis and further characterize this enzyme, we have developed a novel assay to detect unlinkase activity. We demonstrate that unlinkase activity can be detected using this assay, that this unique activity remains unchanged over the course of a poliovirus infection in HeLa cells, and that unlinkase activity is unaffected by the presence of exogenous VPg or anti-VPg antibodies. Furthermore, we have determined that unlinkase recognizes and cleaves a human rhinovirus-poliovirus chimeric substrate with the same efficiency as the poliovirus substrate.  相似文献   

9.
Picornaviral RNA replication utilizes a small virus-encoded protein, termed 3B or VPg, as a primer to initiate RNA synthesis. This priming step requires uridylylation of the VPg peptide by the viral polymerase protein 3D(pol), in conjunction with other viral or host cofactors. In this study, we compared the viral specificity in 3D(pol)-catalyzed uridylylation reactions between poliovirus (PV) and human rhinovirus 16 (HRV16). It was found that HRV16 3D(pol) was able to uridylylate PV VPg as efficiently as its own VPg, but PV 3D(pol) could not uridylylate HRV16 VPg. Two chimeric viruses, PV containing HRV16 VPg (PV/R16-VPg) and HRV16 containing PV VPg (R16/PV-VPg), were constructed and tested for replication capability in H1-HeLa cells. Interestingly, only PV/R16-VPg chimeric RNA produced infectious virus particles upon transfection. No viral RNA replication or cytopathic effect was observed in cells transfected with R16/PV-VPg chimeric RNA, despite the ability of HRV16 3D(pol) to uridylylate PV VPg in vitro. Sequencing analysis of virion RNA isolated from the virus particles generated by PV/R16-VPg chimeric RNA identified a single residue mutation in the VPg peptide (Glu(6) to Val). Reverse genetics confirmed that this mutation was highly compensatory in enhancing replication of the chimeric viral RNA. PV/R16-VPg RNA carrying this mutation replicated with similar kinetics and magnitude to wild-type PV RNA. This cell culture-induced mutation in HRV16 VPg moderately increased its uridylylation by PV 3D(pol) in vitro, suggesting that it might be involved in other function(s) in addition to the direct uridylylation reaction. This study demonstrated the use of chimeric viruses to characterize viral specificity and compatibility in vivo between PV and HRV16 and to identify critical amino acid residue(s) for viral RNA replication.  相似文献   

10.
Amongst the picornaviruses, poliovirus encodes a single copy of the genome-linked protein, VPg wheras foot-and-mouth disease virus uniquely encodes three copies of VPg. We have previously shown that a genetically engineered poliovirus genome containing two tandemly arranged VPgs is quasi-infectious (qi) that, upon genome replication, inadvertently deleted one complete VPg sequence. Using two genetically marked viral genomes with two VPg sequences, we now provide evidence that this deletion occurs via homologous recombination. The mechanism was abrogated when the second VPg was engineered such that its nucleotide sequence differed from that of the first VPg sequence by 36%. Such genomes also expressed a qi phenotype, but progeny viruses resulted from (i) random deletions yielding single VPg coding sequences of varying length lacking the Q*G cleavage site between the VPgs and (ii) mutations in the AKVQ*G cleavage sites between the VPgs at either the P4, P1 or P1' position. These variants present a unique genetic system defining the cleavage signals recognized in 3Cpro-catalyzed proteolysis. We propose a recognition event in the cis cleavages of the polyprotein P2-P3 region, and we present a hypothesis why the poliovirus genome does not tolerate two tandemly arranged VPg sequences.  相似文献   

11.
Two critical interactions within the poliovirus RNA replication complex are those of the RNA-dependent RNA polymerase 3D with the viral proteins 3AB and VPg. 3AB is a membrane-binding protein responsible for the localization of the polymerase to the membranous vesicles at which replication occurs. VPg (a peptide comprising the 3B region of 3AB) is the 22-residue soluble product of 3AB cleavage and serves as the protein primer for RNA replication. The detailed interactions of these proteins with the RNA-dependent RNA polymerase 3D were analyzed to elucidate the precise roles of 3AB and VPg in the viral RNA replication complex. Using a membrane-based pull-down assay, we have identified a binding "hot-spot" spanning residues 100 to 104 in the 3B (VPg) region of 3AB which plays a critical role in mediating the interaction of 3AB with the polymerase. Isothermal titration calorimetry shows that the interaction of VPg with 3D is enthalpically driven, with a dissociation constant of 11 microM. Mutational analyses of VPg indicate that a subset of the residues important for 3AB-3D binding are also important for VPg-3D binding. Two residues in particular, P14 and R17, were shown to be absolutely critical for the binding interaction. This work provides the direct characterization of two binding interactions critical for the replication of this important class of viruses and identifies a conserved polymerase binding sequence responsible for targeting the polymerase.  相似文献   

12.
Picornaviruses constitute a large group of viruses comprising medically and economically important pathogens such as poliovirus, coxsackievirus, rhinovirus, enterovirus 71 and foot-and-mouth disease virus. A unique characteristic of these viruses is the use of a viral peptide (VPg) as primer for viral RNA synthesis. As a consequence, all newly formed viral RNA molecules possess a covalently linked VPg peptide. It is known that VPg is enzymatically released from the incoming viral RNA by a host protein, called TDP2, but it is still unclear whether the release of VPg is necessary to initiate RNA translation. To study the possible requirement of VPg release for RNA translation, we developed a novel method to modify the genomic viral RNA with VPg linked via a ‘non-cleavable’ bond. We coupled an azide-modified VPg peptide to an RNA primer harboring a cyclooctyne [bicyclo[6.1.0]nonyne (BCN)] by a copper-free ‘click’ reaction, leading to a VPg-triazole-RNA construct that was ‘non-cleavable’ by TDP2. We successfully ligated the VPg-RNA complex to the viral genomic RNA, directed by base pairing. We show that the lack of VPg unlinkase does not influence RNA translation or replication. Thus, the release of the VPg from the incoming viral RNA is not a prerequisite for RNA translation or replication.  相似文献   

13.
Picornaviruses have a peptide termed VPg covalently linked to the 5'-end of the genome. Attachment of VPg to the genome occurs in at least two steps. First, Tyr-3 of VPg, or some precursor thereof, is used as a primer by the viral RNA-dependent RNA polymerase, 3Dpol, to produce VPg-pUpU. Second, VPg-pUpU is used as a primer to produce full-length genomic RNA. Production of VPg-pUpU is templated by a single adenylate residue located in the loop of an RNA stem-loop structure termed oriI by using a slide-back mechanism. Recruitment of 3Dpol to and its stability on oriI have been suggested to require an interaction between the back of the thumb subdomain of 3Dpol and an undefined region of the 3C domain of viral protein 3CD. We have performed surface acidic-to-alanine-scanning mutagenesis of 3C to identify the surface of 3C with which 3Dpol interacts. This analysis identified numerous viable poliovirus mutants with reduced growth kinetics that correlated to reduced kinetics of RNA synthesis that was attributable to a change in VPg-pUpU production. Importantly, these 3C derivatives were all capable of binding to oriI as well as wild-type 3C. Synthetic lethality was observed for these mutants when placed in the context of a poliovirus mutant containing 3Dpol-R455A, a residue on the back of the thumb required for VPg uridylylation. These data were used to guide molecular docking of the structures for a poliovirus 3C dimer and 3Dpol, leading to a structural model for the 3C(2)-3Dpol complex that extrapolates well to all picornaviruses.  相似文献   

14.
Schein CH  Oezguen N  Volk DE  Garimella R  Paul A  Braun W 《Peptides》2006,27(7):1676-1684
VPgs are essential for replication of picornaviruses, which cause diseases such as poliomyelitis, foot and mouth disease, and the common cold. VPg in infected cells is covalently linked to the 5' end of the viral RNA, or, in a uridylylated form, free in the cytoplasm. We show here the first solution structure for a picornaviral VPg, that of the 22-residue peptide from poliovirus serotype 1. VPg in buffer is inherently flexible, but a single conformer was obtained by adding trimethylamine N-oxide (TMAO). TMAO had only minor effects on the TOCSY spectrum. However, it increased the amount of structured peptide, as indicated by more peaks in the NOESY spectrum and an up to 300% increase in the ratio of normalized NOE cross peak intensities to that in buffer. The data for VPg in TMAO yielded a well defined structure bundle with 0.6 A RMSD (versus 6.6 A in buffer alone), with 10-30 unambiguous constraints per residue. The structure consists of a large loop region from residues 1 to 14, from which the reactive tyrosinate projects outward, and a C-terminal helix from residues 18 to 21 that aligns the sidechains of conserved residues on one face. The structure has a stable docking position at an area on the poliovirus polymerase crystal structure identified as a VPg binding site by mutagenesis studies. Further, UTP and ATP dock in a base-specific manner to the reactive face of VPg, held in place by residues conserved in all picornavirus VPgs.  相似文献   

15.
The genome of foot-and-mouth disease virus (FMDV) differs from that of other picornaviruses in that it encodes a larger 3A protein (>50% longer than poliovirus 3A), as well as three copies of protein 3B (also known as VPg). Previous studies have shown that a deletion of amino acids 93 to 102 of the 153-codon 3A protein is associated with an inability of a Taiwanese strain of FMDV (O/TAW/97) to cause disease in bovines. Recently, an Asian virus with a second 3A deletion (amino acids 133 to 143) has also been detected (N. J. Knowles et al., J. Virol. 75:1551-1556, 2001). Genetically engineered viruses harboring the amino acids 93 to 102 or 133 to 143 grew well in porcine cells but replicated poorly in bovine cells, whereas a genetically engineered derivative of the O/TAW/97 virus expressing a full-length 3A (strain A12) grew well in both cell types. Interestingly, a virus with a deletion spanning amino acid 93 to 144 also grew well in porcine cells and caused disease in swine. Further, genetically engineered viruses containing only a single copy of VPg were readily recovered with the full-length 3A, the deleted 3A (amino acids 93 to 102), or the "super" deleted forms of 3A (missing amino acids 93 to 144). All of the single-VPg viruses were attenuated in porcine cells and replicated poorly in bovine cells. The single-VPg viruses produced a mild disease in swine, indicating that the VPg copy number is an important determinant of host range and virulence. The association of VPg copy number with increased virulence in vivo may help to explain why all naturally occurring FMDVs have retained three copies of VPg.  相似文献   

16.
A protein similar to that previously demonstrated on poliovirus RNA and replicative intermediate RNA (VPg) was found on all sizes of nascent viral RNA molecules and on the polyuridylic acid isolated from negative-strand RNA. 32P-labeled nascent chains were released from their template RNA and fractionated by exclusion chromatography on agarose. Fingerprint analysis using two-dimensional polyacrylamide gels of RNase T1 oligonucleotides derived from nascent chains of different lengths showed that a size fractionation of nascent chains was achieved. VPg was recovered from nascent chains varying in length from 7,500 nucleotides (full-sized RNA) to about 500 nucleotides. No other type of 5' terminus could be demonstrated on nascent RNA, and the yield of VPg was consistent with one molecule of the protein on each nascent chain. These results are consistent with the concept that the protein is added to the 5' end of the growing RNA chains at a very early stage, possibly as a primer of RNA synthesis. Analysis of the polyuridylic acid tract isolated from the replicative intermediate and double-stranded RNAs indicated that a protein of the same size as that found on the nascent chains and virion RNA is also linked to the negative-strand RNAs. It is likely that a similar mechanism is responsible for initiation of synthesis of both plus- and minus-strand RNAs.  相似文献   

17.
Self-catalyzed linkage of poliovirus terminal protein VPg to poliovirus RNA   总被引:19,自引:0,他引:19  
G J Tobin  D C Young  J B Flanegan 《Cell》1989,59(3):511-519
The poliovirus terminal protein, VPg, was covalently linked to poliovirus RNA in a reaction that required synthetic VPg, Mg2+, and a replication intermediate synthesized in vitro. The VPg linkage reaction did not require the viral polymerase, host factor, or ribonucleoside triphosphates and was specific for template-linked minus-strand RNA synthesized on poliovirion RNA. The covalent nature of the bond between VPg and the RNA was demonstrated by the isolation of VPg-pUp from VPg-linked RNA. A model is proposed in which the tyrosine residue in VPg forms a phosphodiester bond with the 5'UMP in minus-strand RNA in a self-catalyzed transesterification reaction. It appears that either the RNA, VPg, or a combination of both forms the catalytic center for this reaction.  相似文献   

18.
Using a rapid phenol extraction assay, an enzyme was purified from uninfected HeLa cells that can cleave the 5'-terminal protein (VPg) from poliovirus RNA. Both cytoplasmic and nuclear extracts had enzymes with similar behavior. A polypeptide of molecular weight 27,000 was the major one present in the purified preparation. Assuming that this protein is the enzyme, a very low turnover number was calculated for it. The purified enzyme would cleave the tyrosine-phosphate bond linking VPg to poliovirus RNA with minimal degradation of the RNA or of VPg. If the RNA was first treated with proteinase K to degrade VPg, leaving a small peptide on the RNA, this peptide could also be removed by the enzyme. If the RNA was degraded with T1 RNase, leaving VPg attached to a nonanucleotide, the enzyme still would cleave off VPg, although incompletely. If the RNA was degraded completely, leaving either pUp or pU attached to VPg, the enzyme would not remove the nucleotides from the protein. Thus, for the enzyme to be active requires some length of polynucleotide attached to the protein but only a short peptide need be present for the enzyme to act.  相似文献   

19.
Osman TA  Coutts RH  Buck KW 《Journal of virology》2006,80(21):10743-10751
Cereal yellow dwarf virus (CYDV) RNA has a 5'-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3'-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3' terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3' end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3'-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.  相似文献   

20.
The evolution of RNA viruses   总被引:3,自引:0,他引:3  
The structures of spherical RNA plant tiruses, containing 180 copies of one protein subunit, are closely related to those of the animal RNA picornaviruses, which are built of 60 copies of each of three larger capsid proteins. Other spherical RNA and DNA viruses utilize the same structural motif as building units of the viral capsid. It is therefore probable that many of the simple RNA viruses, whether found in animals or plants, have had a common genetic origin. The original gene may have coded for a protein that bound to specific molecules on the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号