首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
潜伏结核感染(latent tuberculosis infection,LTBI)复发是新发结核病的主要来源,其中耐药结核病所占比例较大,使耐药LTBI复发的防控成为结核病研究的重点。耐药结核分枝杆菌潜伏-复发感染动物模型是开展耐药结核病防控相关机制研究、抗耐药结核分枝杆菌药物和疫苗研究的基础。目前耐药结核分枝杆菌感染动物模型缺乏,而已有的结核分枝杆菌标准株H37Rv潜伏-复发感染模型存在缺陷,如小鼠模型的潜伏期荷菌量偏高、复发期变异大,而猴模型的潜伏期和复发期不可预测。模型的可控性差使其应用困难,且缺乏可用的免疫学评价指标,导致远期复发无法预测。因此,基于现有H37Rv潜伏-复发感染动物模型的制备方法,展望耐药结核分枝杆菌潜伏-复发感染动物模型可能存在的缺陷,通过选用新的抑菌剂和诱导剂,制备有稳定潜伏期、潜伏时长适中、复发起点和复发水平变异小的动物模型,是未来耐药结核分枝杆菌潜伏-复发感染动物模型研究的方向。  相似文献   

2.
结核分枝杆菌是结核病的致病菌,随着全球结核病的再次蔓延及艾滋病的流行,结核分枝杆菌的潜伏性感染日益到重视,本文就该菌潜伏感染动物模型的建立,潜伏性感染中该菌的生物学特性以及潜伏性感染的免疫发病机制等方面的研究进展一综述。  相似文献   

3.
目前对于结核分枝杆菌进入潜伏期的机制以及再激化的原因知之甚少,一个重要的原因是缺乏潜伏感染(LTBI)动物模型,完整的LTBI模型应包括两种类型,一是低剂量荷菌的持续性感染模型,另一种为潜伏感染模型,即Cornell模型的改进型。综合使用柯氏量表评分、脾肺荷菌数、诱导的IFN-γ和TNF-α水平、组织中IL-10和IL-4的表达、脏器中特异性抗原负荷以及激素诱导TB复发的时间、潜伏感染相关基因的表达水平等指标可以比较准确、客观、特异性的评价小鼠LTBI模型的反应性。  相似文献   

4.
每年有超过8百万人感染结核,其中绝大部分没有发展为活动性结核病,而是表现为潜伏性结核感染。大多数活动性结核病是潜伏感染的结核杆菌重新被激活所致,因此结核潜伏感染者成为结核患者的重要来源。及早诊断和治疗结核潜伏感染者是控制结核传播的最有效手段之一。我们较要综述了目前国内外结核潜伏感染的诊断方法及其新进展。  相似文献   

5.
结核分枝杆菌感染的动物模型   总被引:2,自引:0,他引:2  
复制结核分枝杆菌感染的动物模型是进行结核病研究的基础。本文分别对小鼠、豚鼠、兔和非人灵长类动物结核模型的特点及其应用进行综述,并指出慢性持续性感染模型是结核动物模型研究的重点。  相似文献   

6.
本研究旨在探讨白细胞介素22(interleukin 22,IL-22)基因多态性位点与肺结核易感性的关系。采用SNPscan™多重单核苷酸多态性(single nucleotide polymorphism,SNP)分型技术,对453例肺结核患者(结核病组)和373例与患者长期密切接触者〔包括109例潜伏结核感染(latent tuberculosis infection,LTBI)者、264例健康对照者〕的IL-22基因的4个SNP位点(rs1179249、rs2227491、rs17224704、rs2227478)多态性进行分析。结核病组、LTBI组和对照组中4个SNP位点的基因型分布经哈温平衡(Hardy-Weinberg equilibrium,HWE)检验均处于遗传平衡状态。结果显示,rs17224704位点存在AA、TA和TT基因型。>55岁人群中,此位点TA基因型在对照组中的分布显著高于结核病组(P=0.047 9,OR=0.365,95% CI=0.135~0.991);AA基因型在LTBI组中的分布显著低于结核病组(P=0.027 6);TA基因型在LTBI组中的分布显著高于结核病组(P=0.007 37,OR=0.213,95% CI=0.069~0.660)。对照组和LTBI组的等位基因T频率显著高于结核病组(P=0.026 9,OR=0.388,95% CI=0.167~0.897;P=0.025 0,OR=0.322,95% CI=0.119~0.867)。IL-22基因rs17224704的多态性可能与中国重庆地区汉族人群肺结核易感性显著相关,其等位基因T可能是肺结核的保护基因。  相似文献   

7.
治疗性结核病疫苗主要用于接种已感染结核分枝杆菌的个体,包括化学药物治疗的患者和潜伏感染者。治疗性疫苗可逆转发生在疾病进展期的非保护性免疫反应,使其向Th1型反应发展;能打破机体的免疫耐受,有效激发宿主针对结核分枝杆菌的以抗原为基础的细胞免疫反应,诱发抗原特异性的细胞毒性T淋巴细胞免疫反应,来清除胞内寄生的结核分枝杆菌。治疗性疫苗将有助于防止潜伏结核病的复发;与药物联合使用以提高药物的治疗效果,尤其是针对耐药结核病的治疗。  相似文献   

8.
结核分枝杆菌(Mycobacterium tuberculosis)是引起结核病的病原菌。其处于持续生存的休眠状态时,可导致长期无症状感染,称为结核潜伏感染。研究显示,结核分枝杆菌染色体中存在大量 “毒素-抗毒素系统”(toxin-antitoxin system,TAS),某些TAS在潜伏感染中发挥作用,可调节细菌生长和诱导细菌进入休眠状态;某些TAS参与生物膜形成和应激反应,但其影响生物膜形成的机制尚未阐明。生物膜中的结核分枝杆菌对多种抗结核药物耐药,且能抵抗宿主免疫系统防御;休眠状态的结核分枝杆菌对抗结核药物通常也是耐受的,给结核病治疗带来了巨大挑战。本文就近年来结核分枝杆菌TAS与生物膜的研究及抗结核药物对生物膜形成的影响进行综述。  相似文献   

9.
由结核分枝杆菌引起的结核病多年来依然是世界范围内严重的公共卫生问题。结核杆菌的致病特点是可在体内巨噬细胞中长期存活,形成潜伏感染。本文就结核杆菌感染过程中机体的免疫应答过程,尤其是潜伏感染形成机制等方面进行了综述,以期为结核病新型疫苗的研发提供参考。  相似文献   

10.
结核分枝杆菌感染实验模型   总被引:3,自引:1,他引:2  
结核分枝杆菌是引起人结核病的主要病原,全世界约有1/3人口感染结核分枝杆菌。尽管该病原可感染并引起许多动物疾病,但人类是其中心宿主。为研究结核分枝杆菌的致病机理及宿主对本病原的保护性和免疫病理学反应,选择合适的动物模型非常必要。本文阐述了结核病研究中常用的实验模型及各种模型的优缺点。实验模型的合理应用将促进我们对结核病的认识,从中获取的资料将有助于我们发现更好的预防和治疗方案。  相似文献   

11.
BackgroundRapid laboratory technologies which can effectively distinguish active tuberculosis (ATB) from controls and latent tuberculosis infection (LTBI) are lacked.The objective of this study is to explore MTB biomarkers in serum that can distinguish ATB from LTBI.MethodsWe constructed a tuberculosis protein microarray containing 64 MTB associated antigens. We then used this microarray to screen 180 serum samples, from patients with ATB and LTBI, and healthy volunteer controls. Both SAM (Significance analysis of microarrays) and ROC curve analysis were used to identify the differentially recognized biomarkers between groups. Extra 300 serum samples from patients with ATB and LTBI, and healthy volunteer controls were employed to validate the identified biomarkers using ELISA-based method.ResultsAccording to the results, the best biomarker combinations of 4 proteins (Rv1860, RV3881c, Rv2031c and Rv3803c) were selected. The biomarker panel containing these 4 proteins has reached a sensitivity of 93.3% and specificity of 97.7% for distinguishing ATB from LTBI, and a sensitivity of 86% and specificity of 97.6% for distinguishing ATB from HC.ConclusionThe biomarker combination in this study has high sensitivity and specificity in distinguishing ATB from LTBI, suggesting it is worthy for further validation in more clinical samples.  相似文献   

12.
Although much research has been done related to biomarker discovery for tuberculosis infection, a set of biomarkers that can discriminate between active and latent TB diseases remains elusive. In the current study we correlate clinical aspects of TB disease with changes in the immune response as determined by biomarkers detected in plasma. Our study measured 18 molecules in human plasma in 17 patients with active disease (APTB), 14 individuals with latent tuberculosis infection (LTBI) and 16 uninfected controls (CTRL). We found that active tuberculosis patients have increased plasma levels of IL-6, IP-10, TNF-α, sCD163 and sCD14. Statistical analysis of these biomarkers indicated that simultaneous measurement of sCD14 and IL-6 was able to diagnose active tuberculosis infection with 83% accuracy. We also demonstrated that TNF-α and sCD163 were correlated with tuberculosis severity. We showed that the simultaneous detection of both plasma sCD14 and IL-6 is a promising diagnostic approach to identify APTB, and further, measurement of TNF-α and sCD163 can identify the most severe cases of tuberculosis.  相似文献   

13.
One‐third of the world's humans has latent tuberculosis infection (LTBI), representing a large pool of potentially active TB. Recent LTBI carries a higher risk of disease progression than remote LTBI. Recent studies suggest important roles of antibodies in TB pathology, prompting us to investigate serum antibody profiles in a cohort with LTBI. In this single‐center prospective observational study, we analyzed IgG‐antibody concentrations against five major Mycobacterium tuberculosis (Mtb) antigens (including 6 kDa early secretory antigenic target (ESAT6), CFP10, and antigen 85A, which are expressed mainly in the growth phase; and mycobacterial DNA‐binding protein 1 (MDP1) and alpha‐crystallin like protein (Acr), which are expressed in the dormant phases) in individuals with recent (n=13) or remote (n=12) LTBI, no Mtb infection (n=19), or active TB (n=15). Antibody titers against ESAT6 and MDP1 were significantly higher in individuals with recent LTBI than in those with no Mtb infection or remote LTBI. All pairwise antibody titers against these five major antigens were significantly correlated throughout the stages of Mtb infection. Five individuals with recent LTBI had significantly higher antibody titers against ESAT6 (P = 0.03), Ag85A (P = 0.048), Acr (P = 0.057), and MDP1 (P = 0.0001) than in individuals with remote LTBI; they were also outside the normal range (+2 SDs). One of these individuals was diagnosed with active pulmonary TB at 18‐month follow‐up examination. These findings indicated that concentrations of antibodies against both multiplying and dormant Mtb are higher in recent LTBI and that individuals with markedly higher antibody titers may be appropriate candidates for prophylactic therapy.  相似文献   

14.
The QuantiFERON®-TB Gold In-Tube test (QFT), an interferon-γ release assay, is used to diagnose Mycobacterium tuberculosis, but its inaccuracy in distinguishing active tuberculosis from latent infection is a major concern. There is thus a need for an easy and accurate tool for achieving that goal in daily clinical settings. This study aimed to identify candidate cytokines for specifically differentiating active tuberculosis from latent infection. Our study population consisted of 31 active TB (tuberculosis) patients, 29 LTBI (latent tuberculosis infection) patients and 10 healthy control subjects. We assayed for 27 cytokines in QFT supernatants of both specific antigen-stimulated blood samples (TBAg) and negative-control samples (Nil). We analyzed their specificities and sensitivities by creating receiver operating characteristic (ROC) curves and measuring the area under those curves (AUCs). In TBAg–Nil supernatants, IL-10, IFN-γ, MCP-1 and IL-1RA showed high AUCs of 0.8120, 0.7842, 0.7419 and 0.7375, respectively. Compared with each cytokine alone, combined assay for these top four cytokines showed positive rates in diagnosing active TB, and GDA analysis revealed that MCP-1 and IL-5 are potent in distinguishing active TB from LTBI, with Wilk’s lambda = 0.718 (p < 0.001). Furthermore, utilizing the unique characteristic of IL-2 that its TBAg–Nil supernatant levels are higher in LTBI compared to active TB, the difference between IFN-γ and IL-2 showed a large AUC of 0.8910. In summary, besides IFN-γ, IL-2, IL-5, IL-10, IL-1RA and MCP-1 in QFT supernatants may be useful for distinguishing active TB from LTBI. Those cytokines may also help us understand the difference in pathogenesis between active TB and LTBI.  相似文献   

15.
Between September 2009 and January 2010, 6 members of the Japanese Eastern Army, who had completed the same training program, were diagnosed with active tuberculosis (TB) on different occasions. The Ministry of Defense conducted a contact investigation of all members who had come into contact with the infected members. The purpose of this study was to verify the efficacy of the TB screening protocol used in this investigation. A total of 884 subjects underwent interferon-gamma release assay (IGRA) and chest X-ray. The 132 subjects who were IGRA positive or with X-ray findings suggestive of TB subsequently underwent chest computer tomography (CT). Chest CT was performed for 132 subjects. Based on CT findings, 24 (2.7%) subjects were classified into the active TB group, 107 (12.1%) into the latent tuberculosis infection (LTBI) group, and 753 (85.2%) into the non-TB group. The first 2 groups underwent anti-TB therapy, and all 3 groups were followed for 2 years after treatment. Although one subject in the active TB group experienced relapse during the follow-up period, no patient in the LTBI or non-TB groups developed TB. IGRA and chest X-ray, followed by chest CT for those IGRA positive or with suspicious X-ray findings, appears to be an effective means of TB contact screening and infection prevention.  相似文献   

16.
Approximately 28% of the human population have been exposed to Mycobacterium tuberculosis (MTB), with the overwhelming majority of infected individuals not developing disease (latent TB infection (LTBI)). While it is known that uncontrolled HIV infection is a major risk factor for the development of TB, the effect of underlying LTBI on HIV disease progression is less well characterized, in part because longitudinal data are lacking. We sorted all participants of the Swiss HIV Cohort Study (SHCS) with at least 1 documented MTB test into one of the 3 groups: MTB uninfected, LTBI, or active TB. To detect differences in the HIV set point viral load (SPVL), linear regression was used; the frequency of the most common opportunistic infections (OIs) in the SHCS between MTB uninfected patients, patients with LTBI, and patients with active TB were compared using logistic regression and time-to-event analyses. In adjusted models, we corrected for baseline demographic characteristics, i.e., HIV transmission risk group and gender, geographic region, year of HIV diagnosis, and CD4 nadir. A total of 13,943 SHCS patients had at least 1 MTB test documented, of whom 840 (6.0%) had LTBI and 770 (5.5%) developed active TB. Compared to MTB uninfected patients, LTBI was associated with a 0.24 decreased log HIV SPVL in the adjusted model (p < 0.0001). Patients with LTBI had lower odds of having candida stomatitis (adjusted odds ratio (OR) = 0.68, p = 0.0035) and oral hairy leukoplakia (adjusted OR = 0.67, p = 0.033) when compared to MTB uninfected patients. The association of LTBI with a reduced HIV set point virus load and fewer unrelated infections in HIV/TB coinfected patients suggests a more complex interaction between LTBI and HIV than previously assumed.

Surprisingly little is known about how latent tuberculosis infection alters human physiology and immune function. Extensive statistical analyses of the large Swiss HIV Cohort Study suggests that latent tuberculosis infection can be protective in individuals with HIV.  相似文献   

17.
Rheumatoid arthritis (RA) is an autoimmune disease characterised by the destruction of articular cartilage and bone damage. The chronic treatment of RA patients causes a higher susceptibility to infectious diseases such as tuberculosis (TB); one-third of the world’s population is latently infected (LTBI) with Mycobacterium tuberculosis (Mtb). The tuberculin skin test is used to identify individuals LTBI, but many studies have shown that this test is not suitable for RA patients. The goal of this work was to test the specific cellular immune responses to the Mtb malate synthase (GlcB) and heat shock protein X (HspX) antigens of RA patients and to correlate those responses with LTBI status. The T-helper (Th)1, Th17 and Treg-specific immune responses to the GlcB and HspX Mtb antigens were analysed in RA patients candidates for tumour necrosis factor-α blocker treatment. Our results demonstrated that LTBI RA patients had Th1-specific immune responses to GlcB and HspX. Patients were followed up over two years and 14.3% developed active TB. After the development of active TB, RA patients had increased numbers of Th17 and Treg cells, similar to TB patients. These results demonstrate that a GlcB and HspX antigen assay can be used as a diagnostic test to identify LTBI RA patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号