首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
H Zhou  W O'Neal  N Morral    A L Beaudet 《Journal of virology》1996,70(10):7030-7038
Although adenovirus vectors offer many advantages, it would be desirable to develop vectors with improved expression and decreased toxicity. Toward this objective, an adenovirus vector system with deletion of both the El and E2a regions was developed. A 5.9-kb fragment of the adenovirus type 5 (Ad5) genome containing the E2a gene and its early and late promoters was transfected into 293 cells. A complementing cell line, designated 293-C2, expressed the E2a mRNA and protein and was found to complement the defect in Ad5 viruses with temperature-sensitive or deletion mutations in E2a. A deletion of 1.3 kb removing codons 40 to 471 of the 529 amino acids of E2a was introduced into plasmids for preparation of viruses and vectors. An Ad5 virus with disruption of the El gene and deletion of E2a grew on 293-C2 cells but not on 293 cells. Vectors with E1 and E2a deleted expressing Escherichia coli beta-galactosidase or human alpha1-antitrypsin were prepared and expressed the reporter genes after intravenous injection into mice. This vector system retains sequences in common between the complementing cell line and the vectors, including 3.4 kb upstream and 1.1 kb downstream of the deletion. These vectors have potential advantages of increased capacity for insertion of transgene sequences, elimination of expression of E2a, and possibly reduction in expression of other viral proteins. Although the titers of the vectors with deleted are about 10- to 30-fold below those of vectors with E2a wild-type regions, the former vectors are suitable for detailed studies with animals to evaluate the effects on host immune responses, on duration of expression, and on safety.  相似文献   

3.
We have designed and constructed integration-defective retroviral vectors to explore their potential for gene targeting in mammalian cells. Two nonoverlapping deletion mutants of the bacterial neomycin resistance (neo) gene were used to detect homologous recombination events between viral and chromosomal sequences. Stable neo gene correction events were selected at a frequency of approximately 1 G418r cell per 3 x 10(6) infected cells. Analysis of the functional neo gene in independent targeted cell clones indicated that unintegrated retroviral linear DNA recombined with the target by gene conversion for variable distances into regions of nonhomology. In addition, transient neo gene correction events which were associated with the complete loss of the chromosomal target sequences were observed. These results demonstrated that retroviral vectors can recombine with homologous chromosomal sequences in rodent and human cells.  相似文献   

4.
The usefulness of adenovirus type 5 as a vector for homologous recombination was examined in CHO cells by using the adenine phosphoribosyltransferase (aprt) gene. Infection of a hemizygous CHO APRT- cell line containing a 3-bp deletion in exon 5 of the aprt gene with a recombinant adenovirus containing the wild-type gene resulted in restoration of the APRT+ phenotype at a frequency of 10(-5) to 10(-6) per infected cell. A relatively high frequency (approximately 6 to 20%) of the transductants appears to result from a homologous recombination event. The mutation on the chromosomal aprt gene is corrected in the homologous recombinants, and APRT expression is restored to a normal hemizygous level. Neither adenovirus nor exogenous promoter sequences are detected in the homologous recombinants. The remaining transductants result from random integration of the aprt gene with the adenovirus sequence. A number of adenovirus vectors containing different promoter sequences linked to the hamster aprt gene were constructed. A possible role for the promoter region in the homologous recombination event was indicated by the lack of homologous recombination in constructs lacking an active promoter.  相似文献   

5.
Utilizing genetic modules of simple retroviruses, we have developed a novel generation of gene transfer vectors with improved therapeutic potential. In the 5' untranslated "leader" sequences, all AUG codons which may aberrantly initiate translation and all viral coding sequences were removed. Thus, the probability of expressing unwanted peptides and the potential for homologous recombination with retroviral genes were largely reduced, and the cloning capacity was increased. The transgene was inserted to replace the viral gag sequences, and a new minimal splice acceptor was introduced, resulting in increased expression with all genes tested (those coding for human multidrug resistance 1 and enhanced green fluorescent protein, as well as the lacZ gene). These vectors may represent attractive tools for human gene therapy, because they increase the efficiency of transgene expression and may also increase safety in medical applications.  相似文献   

6.
Gene targeting with a replication-defective adenovirus vector.   总被引:3,自引:0,他引:3       下载免费PDF全文
Wide application of the gene-targeting technique has been hampered by its low level of efficiency. A replication-defective adenovirus vector was used for efficient delivery of donor DNA in order to bypass this problem. Homologous recombination was selected between a donor neo gene inserted in the adenovirus vector and a target mutant neo gene on a nuclear papillomavirus plasmid. These recombinant adenoviruses allowed gene transfer to 100% of the treated cells without impairing their viability. Homologous recombinants were obtained at a level of frequency much higher than that obtained by electroporation or a calcium phosphate procedure. The structure of the recombinants was analyzed in detail after recovery in an Escherichia coli strain. All of the recombinants examined had experienced a precise correction of the mutant neo gene. Some of them had a nonhomologous rearrangement of their sequences as well. One type of nonhomologous recombination took place at the end of the donor-target homology. The vector adenovirus DNA was inserted into some of the products obtained at a high multiplicity of infection. The insertion was at the end of the donor-target homology with a concomitant insertion of a 10-bp-long filler sequence in one of the recombinants. The possible relationship between these rearrangements and the homologous recombination is discussed. These results demonstrate the applicability of adenovirus-mediated gene delivery in gene targeting and gene therapy.  相似文献   

7.
Staib C  Drexler I  Ohlmann M  Wintersperger S  Erfle V  Sutter G 《BioTechniques》2000,28(6):1137-42, 1144-6, 1148
Recombinant vaccinia viruses are extremely valuable tools for research in molecular biology and immunology. The extension of vaccinia vector technology to replication-deficient and safety-tested virus strains such as modified vaccinia virus Ankara (MVA) have made this versatile eukaryotic expression system even more attractive for basic and clinical research. Here, we report on easily obtaining recombinant MVA using stringent growth selection on rabbit kidney RK-13 cells. We describe the construction and use of new MVA vector plasmids that carry an expression cassette of the vaccinia virus host range gene, K1L, as a transient selectable marker. These plasmids allow either stable insertion of additional recombinant genes into the MVA genome or precisely targeted mutagenesis of MVA genomic sequences. Repetitive DNA sequences flanking the K1L gene were designed to remove the marker gene from the viral genome by homologous recombination under nonselective growth conditions. The convenience of this new selection technique is demonstrated by isolating MVA recombinants that produce green fluorescent protein and by generating MVA deletion mutants.  相似文献   

8.
The p5 promoter region of the adeno-associated virus type 2 (AAV-2) rep gene has been described as essential for Rep-mediated site-specific integration (RMSSI) of plasmid sequences in human chromosome 19. We report here that insertion of a full-length or minimal p5 element between the viral inverted terminal repeats does not significantly increase RMSSI of a recombinant AAV (rAAV) vector after infection of growth-arrested or proliferating human cells. This result suggests that the p5 element may not improve RMSSI of rAAV vectors in vivo.  相似文献   

9.
In high-capacity adenovirus (HC-Ad) vectors the size and/or composition of the vector genome influences vector stability during production and the expression profile following gene transfer. Typically, an HC-Ad vector will contain both a gene or an expression cassette and stuffer DNA that is required to balance the final vector genome to a size of between 27 and 36 kb. To gain an improved understanding of factors that may influence gene expression from HC-Ad vectors, we have generated a series of vectors that carry different combinations of human alpha-1 antitrypsin (hAAT) expression constructs and stuffer DNAs. Expression in vitro did not predict in vivo performance: all vectors expressed hAAT at similar levels when tested in cell culture. Hepatic expression was evaluated following in vivo gene transfer in C57BL/6J mice. hAAT levels obtained from genomic DNA were significantly higher than levels achieved with small cDNA expression cassettes. Expression was independent of the orientation and only marginally influenced by the location of the expression cassette within the vector genome. The use of lambda stuffer DNA resulted in low-level but stable expression for at least 3 months when higher doses were applied. A potential matrix attachment region element was identified within the hAAT gene and caused a 10-fold increase in expression when introduced in an HC-Ad vector genome carrying a phosphoglycerate kinase (pgk) hAAT cDNA construct. We also illustrate the influence of the promoter on anti-hAAT antibody formation in C57BL/6J mice: a human cytomegalovirus but not a pgk promoter resulted in an anti-hAAT antibody response. Thus, the overall design of HC-Ad vectors may significantly influence amounts and duration of gene expression at different levels.  相似文献   

10.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

11.
Adeno-associated virus vector integration junctions.   总被引:5,自引:4,他引:1       下载免费PDF全文
Vectors derived from adeno-associated virus (AAV) have the potential to stably transduce mammalian cells by integrating into host chromosomes. Despite active research on the use of AAV vectors for gene therapy, the structure of integrated vector proviruses has not previously been analyzed at the DNA sequence level. Studies on the integration of wild-type AAV have identified a common site-specific integration locus on human chromosome 19; however, most AAV vectors do not appear to integrate at this locus. To improve our understanding of AAV vector integration, we analyzed the DNA sequences of several integrated vector proviruses. HeLa cells were transduced with an AAV shuttle vector, and integrated proviruses containing flanking human DNA were recovered as bacterial plasmids for further analysis. We found that AAV vectors integrated as single-copy proviruses at random chromosomal locations and that the flanking HeLa DNA at integration sites was not homologous to AAV or the site-specific integration locus of wild-type AAV. Recombination junctions were scattered throughout the vector terminal repeats with no apparent site specificity. None of the integrated vectors were fully intact. Vector proviruses with nearly intact terminal repeats were excised and amplified after infection with wild-type AAV and adenovirus. Our results suggest that AAV vectors integrate by nonhomologous recombination after partial degradation of entering vector genomes. These findings have important implications for the mechanism of AAV vector integration and the use of these vectors in human gene therapy.  相似文献   

12.
Conditional gene expression or gene disruption using Cre/loxP- or FLP/frt-based recombination systems are valuable tools for studying gene function in development and disease. Recombinant adenoviral vectors expressing Cre recombinase have been suggested as an alternative for deletion of floxed sequences. To further improve this approach we generated a high-capacity adenoviral (HC-Ad) vector expressing Cre (HC-Adcre). In this vector all viral coding sequences are deleted resulting in decreased toxicity. In the present study HC-Adcre efficiently mediated recombination between two loxP sites located in the genome of a reporter cell line. When intravenously injected into ROSA26 reporter mice, a floxed sequence was excised in hepatocytes resulting in expression of the beta-gal reporter. Our data indicate that HC-Ad vectors expressing Cre effectively delete floxed sequences in vivo and have a significant potential as a tool for functional studies in mice.  相似文献   

13.
Viral and transposon vectors have been employed in gene therapy as well as functional genomics studies. However, the goals of gene therapy and functional genomics are entirely different; gene therapists hope to avoid altering endogenous gene expression (especially the activation of oncogenes), whereas geneticists do want to alter expression of chromosomal genes. The odds of either outcome depend on a vector's preference to integrate into genes or control regions, and these preferences vary between vectors. Here we discuss the relative strengths of DNA vectors over viral vectors, and review methods to overcome barriers to delivery inherent to DNA vectors. We also review the tendencies of several classes of retroviral and transposon vectors to target DNA sequences, genes, and genetic elements with respect to the balance between insertion preferences and oncogenic selection. Theoretically, knowing the variables that affect integration for various vectors will allow researchers to choose the vector with the most utility for their specific purposes. The three principle benefits from elucidating factors that affect preferences in integration are as follows: in gene therapy, it allows assessment of the overall risks for activating an oncogene or inactivating a tumor suppressor gene that could lead to severe adverse effects years after treatment; in genomic studies, it allows one to discern random from selected integration events; and in gene therapy as well as functional genomics, it facilitates design of vectors that are better targeted to specific sequences, which would be a significant advance in the art of transgenesis.  相似文献   

14.
15.
Genomes of Spiroplasma citri strains have rearranged frequently during their evolution, partly due to multiple integrated sequences of spiroplasma viruses. To understand better the role of viral sequences in genome evolution, we examined available nucleotide sequences of viruslike elements in the S. citri chromosome. Comparison of integrated and nonintegrated sequences of spiroplasma virus SpV1-C74 DNA suggested that it is an encapsidated form of the circular transposition intermediate belonging to an insertion sequence (IS3) family member. One SpV1-C74 viral DNA fragment was identified as interrupting the remains of a DNA adenine modification methylase gene. A viral DNA insertion of SpV1-R8A2 B DNA had hallmarks of having suffered an internal deletion by a site-specific recombination system. Homologous recombination likely was responsible for several deletions within viral DNA. A homologous recombination event was inferred between part of a viral DNA insertion and a similar chromosomal sequence. Dispersed sequences from SpV1-like C4 open reading frames (ORFs) were identified as involved in a complex deletion-inversion event. Thus, SpV1-like sequences likely have altered spiroplasma genomes by inserting within active genes, destroying their function, by providing targets for site-specific recombination, by mediating deletions of sequences adjacent to their integration sites, and by providing targets for homologous recombination, leading to inversions.  相似文献   

16.
17.
Direct or inverse repeated sequences are important functional features of prokaryotic and eukaryotic genomes. Considering the unique mechanism, involving single-stranded genomic intermediates, by which adenovirus (Ad) replicates its genome, we investigated whether repetitive homologous sequences inserted into E1-deleted adenoviral vectors would affect replication of viral DNA. In these studies we found that inverted repeats (IRs) inserted into the E1 region could mediate predictable genomic rearrangements, resulting in vector genomes devoid of all viral genes. These genomes (termed DeltaAd.IR) contained only the transgene cassette flanked on both sides by precisely duplicated IRs, Ad packaging signals, and Ad inverted terminal repeat sequences. Generation of DeltaAd.IR genomes could also be achieved by coinfecting two viruses, each providing one inverse homology element. The formation of DeltaAd.IR genomes required Ad DNA replication and appeared to involve recombination between the homologous inverted sequences. The formation of DeltaAd. IR genomes did not depend on the sequence within or adjacent to the inverted repeat elements. The small DeltaAd.IR vector genomes were efficiently packaged into functional Ad particles. All functions for DeltaAd.IR replication and packaging were provided by the full-length genome amplified in the same cell. DeltaAd.IR vectors were produced at a yield of approximately 10(4) particles per cell, which could be separated from virions with full-length genomes based on their lighter buoyant density. DeltaAd.IR vectors infected cultured cells with the same efficiency as first-generation vectors; however, transgene expression was only transient due to the instability of deleted genomes within transduced cells. The finding that IRs present within Ad vector genomes can mediate precise genetic rearrangements has important implications for the development of new vectors for gene therapy approaches.  相似文献   

18.
Construction of adenoviral vectors   总被引:12,自引:0,他引:12  
Recombinant adenovirus vectors have proven to be useful tools in facilitating gene transfer. Construction of such vectors requires a knowledge of the adenovirus genome structure and its life cycle. A commonly used recombinant adenovirus involves deletion of the E1 region; such a recombinant is traditionally produced by overlap recombination after contransfection of 293 cells with a plasmid shuttle vector and a large right-end restriction fragment of viral DNA. The shuttle vector contains a cassette for a transgene placed in region E1 and flanking sequences from adenovirus for recombination. Normally, a high background of parental virus results because of the difficulty in separating right-end restriction fragment length DNA from uncut DNA. This paper describes a negative selection based on the traditional cotransfection method using viral DNA from an E1-deleted adenoviral recombinant that expresses green fluorescent protein (GFP). In situ fluorescent microscopy is used to distinguish the recombinant plaques (white or nonfluorescent) from the parental virus plaques (green or fluorescent). In addition, this system allows for the detection of contaminating parental virus at later stages when production lots of the recombinant vector are being made.  相似文献   

19.
基因编辑技术是通过核酸内切酶对基因组DNA进行定向改造的技术,可以实现对特定DNA碱基的缺失、替换等,常用的四种基因编辑工具分别是:巨型核酸酶、锌指核酸酶、转录激活因子样效应物核酸酶以及CRISPR/Cas9系统.其中CRISPR/Cas9系统作为一种新型的基因组编辑技术具有组成简单、特异性好、切割效率高的优点.该文对...  相似文献   

20.
Adenovirus (Ad) derived vectors have been widely used for short or long-term gene transfer, both for gene therapy and vaccine applications. Because of the frequent pre-existing immunity against the classically used human adenovirus type 5, canine adenovirus type 2 (CAV2) has been proposed as an alternative vector for human gene transfer. The well-characterized biology of CAV2, together with its ease of genetic manipulation, offer major advantages, notably for gene transfer into the central nervous system, or for inducing a wide range of protective immune responses, from humoral to cellular immunity. Nowadays, CAV2 represents one of the most appealing nonhuman adenovirus for use as a vaccine vector. This protocol describes a simple method to construct, produce and titer recombinant CAV2 vectors. After cloning the expression cassette of the gene of interest into a shuttle plasmid, the recombinant genomic plasmid is obtained by homologous recombination in the E. coli BJ5183 bacterial strain. The resulting genomic plasmid is then transfected into canine kidney cells expressing the complementing CAV2-E1 genes (DK-E1). A viral amplification enables the production of a large viral stock, which is purified by ultracentrifugation through cesium chloride gradients and desalted by dialysis. The resulting viral suspension routinely has a titer of over 1010 infectious particles per ml and can be directly administrated in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号