首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 0 毫秒
1.
2.
Although single-species deterministic difference equations have long been used in modeling the dynamics of animal populations, little attention has been paid to how stochasticity should be incorporated into these models. By deriving stochastic analogues to difference equations from first principles, we show that the form of these models depends on whether noise in the population process is demographic or environmental. When noise is demographic, we argue that variance around the expectation is proportional to the expectation. When noise is environmental the variance depends in a non-trivial way on how variation enters into model parameters, but we argue that if the environment affects the population multiplicatively then variance is proportional to the square of the expectation. We compare various stochastic analogues of the Ricker map model by fitting them, using maximum likelihood estimation, to data generated from an individual-based model and the weevil data of Utida. Our demographic models are significantly better than our environmental models at fitting noise generated by population processes where noise is mainly demographic. However, the traditionally chosen stochastic analogues to deterministic models--additive normally distributed noise and multiplicative lognormally distributed noise--generally fit all data sets well. Thus, the form of the variance does play a role in the fitting of models to ecological time series, but may not be important in practice as first supposed.  相似文献   

3.
New stochastic models are developed for the dynamics of a viral infection and an immune response during the early stages of infection. The stochastic models are derived based on the dynamics of deterministic models. The simplest deterministic model is a well-known system of ordinary differential equations which consists of three populations: uninfected cells, actively infected cells, and virus particles. This basic model is extended to include some factors of the immune response related to Human Immunodeficiency Virus-1 (HIV-1) infection. For the deterministic models, the basic reproduction number, R0, is calculated and it is shown that if R0<1, the disease-free equilibrium is locally asymptotically stable and is globally asymptotically stable in some special cases. The new stochastic models are systems of stochastic differential equations (SDEs) and continuous-time Markov chain (CTMC) models that account for the variability in cellular reproduction and death, the infection process, the immune system activation, and viral reproduction. Two viral release strategies are considered: budding and bursting. The CTMC model is used to estimate the probability of virus extinction during the early stages of infection. Numerical simulations are carried out using parameter values applicable to HIV-1 dynamics. The stochastic models provide new insights, distinct from the basic deterministic models. For the case R0>1, the deterministic models predict the viral infection persists in the host. But for the stochastic models, there is a positive probability of viral extinction. It is shown that the probability of a successful invasion depends on the initial viral dose, whether the immune system is activated, and whether the release strategy is bursting or budding.  相似文献   

4.
In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of ‘global’ variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.  相似文献   

5.
We extend to harvesting stochastic differential equation (SDE) models in a random environment our previous work on models without harvesting concerning the resolution of the It?-Stratonovich controversy. The resolution is obtained for the very general class of models dN/dt=N (r(N)-h(N)+sigmaepsilon(t)), where N=N(t) is the population size at time t, r(N) is the (density-dependent) "mean" per capita growth rate, h(N) is the (density-dependent) harvesting effort, epsilon(t) is a standard white noise (representing environmental random fluctuations), and sigma is a noise intensity parameter. It? and Stratonovich calculus in the resolution of SDEs apparently give different qualitative and quantitative results, leading to controversy on which calculus is more appropriate and creating an obstacle on the use of this modeling approach. We show that the apparent difference between the two calculi is due to a semantic confusion based on the fallacious assumption that we are working with the same type of mean rates. After clearing the confusion, the two calculi yield exactly the same results and we obtain important common conditions for extinction and for existence of a stationary density. The resolution of the controversy is intertwined with and sheds light on the estimation issues.  相似文献   

6.
Results are summarized from the literature on three commonly used stochastic population models with regard to persistence time. In addition, several new results are introduced to clearly illustrate similarities between the models. Specifically, the relations between the mean persistence time and higher-order moments for discrete-time Markov chain models, continuous-time Markov chain models, and stochastic differential equation models are compared for populations experiencing demographic variability. Similarities between the models are demonstrated analytically, and computational results are provided to show that estimated persistence times for the three stochastic models are generally in good agreement when the models are consistently formulated. As an example, the three stochastic models are applied to a population satisfying logistic growth. Logistic growth is interesting as different birth and death rates can yield the same logistic differential equation. However, the persistence behavior of the population is strongly dependent on the explicit forms for the birth and death rates. Computational results demonstrate how dramatically the mean persistence time can vary for different populations that experience the same logistic growth.  相似文献   

7.
The Yule model is a widely used speciation model in evolutionary biology. Despite its simplicity many aspects of the Yule model have not been explored mathematically. In this paper, we formalise two analytic approaches for obtaining probability densities of individual branch lengths of phylogenetic trees generated by the Yule model. These methods are flexible and permit various aspects of the trees produced by Yule models to be investigated. One of our methods is applicable to a broader class of evolutionary processes, namely the Bellman-Harris models. Our methods have many practical applications including biodiversity and conservation related problems. In this setting the methods can be used to characterise the expected rate of biodiversity loss for Yule trees, as well as the expected gain of including the phylogeny in conservation management. We briefly explore these applications.  相似文献   

8.
In this paper we investigate the stochastic modelling of a spatially structured biological population subject to social interaction. The biological motivation comes from the analysis of field experiments on a species of ants which exhibits a clear tendency to aggregate, still avoiding overcrowding. The model we propose here provides an explanation of this experimental behavior in terms of long-ranged aggregation and short-ranged repulsion mechanisms among individuals, in addition to an individual random dispersal described by a Brownian motion. Further, based on a law of large numbers, we discuss the convergence, for large N, of a system of stochastic differential equations describing the evolution of N individuals (Lagrangian approach) to a deterministic integro-differential equation describing the evolution of the mean-field spatial density of the population (Eulerian approach).  相似文献   

9.
Promotion time models have been recently adapted to the context of infectious diseases to take into account discrete and multiple exposures. However, Poisson distribution of the number of pathogens transmitted at each exposure was a very strong assumption and did not allow for inter-individual heterogeneity. Bernoulli, the negative binomial, and the compound Poisson distributions were proposed as alternatives to Poisson distribution for the promotion time model with time-changing exposure. All were derived within the frailty model framework. All these distributions have a point mass at zero to take into account non-infected people. Bernoulli distribution, the two-component cure rate model, was extended to multiple exposures. Contrary to the negative binomial and the compound Poisson distributions, Bernoulli distribution did not enable to connect the number of pathogens transmitted to the delay between transmission and infection detection. Moreover, the two former distributions enable to account for inter-individual heterogeneity. The delay to surgical site infection was an example of single exposure. The probability of infection was very low; thus, estimation of the effect of selected risk factors on that probability obtained with Bernoulli and Poisson distributions were very close. The delay to nosocomial urinary tract infection was a multiple exposure example. The probabilities of pathogen transmission during catheter placement and catheter presence were estimated. Inter-individual heterogeneity was very high, and the fit was better with the compound Poisson and the negative binomial distributions. The proposed models proved to be also mechanistic. The negative binomial and the compound Poisson distributions were useful alternatives to account for inter-individual heterogeneity.  相似文献   

10.
11.
12.
The present paper shows possible effects of antiretroviral treatment on the dynamics of the spread of the disease of human immunodeficiency virus infection in a population of varying size. By introducing time delays, we model the latency period and the delayed onset of positive treatment effects in the patients. The Hopf bifurcation and stability behaviour of the delay differential-equation model are analysed and simulations for different scenarios depending on the size of the treatment-induced delay are presented, and the results are discussed in detail.  相似文献   

13.
A set oflogically connected models, to study chemical systems ofbiological interest, is presented. The sequence in the set is dictated by a progressive reduction of details with a corresponding enlargement of the field of application. The exposition starts with models suitable for interactions among a finite number of molecules, passes then to models considering also solvent effects and ends with models specialized for DNA containing systems.  相似文献   

14.
15.
Parallel numerical simulations of excitation and recovery in three-dimensional myocardial domains are presented. The simulations are based on the anisotropic Bidomain and Monodomain models, including intramural fiber rotation and orthotropic or axisymmetric anisotropy of the intra- and extra-cellular conductivity tensors. The Bidomain model consist of a system of two reaction-diffusion equations, while the Monodomain model consists of one reaction-diffusion equation. Both models are coupled with the phase I Luo-Rudy membrane model describing the ionic currents. Simulations of excitation and repolarization sequences on myocardial slabs of different sizes show how the distribution of the action potential durations (APD) is influenced by both the anisotropic electrical conduction and the fiber rotation. This influence occurs in spite of the homogeneous intrinsic properties of the cell membrane. The APD dispersion patterns are closely correlated to the anisotropic curvature of the excitation wavefront.  相似文献   

16.
Large-scale microarray gene expression data provide the possibility of constructing genetic networks or biological pathways. Gaussian graphical models have been suggested to provide an effective method for constructing such genetic networks. However, most of the available methods for constructing Gaussian graphs do not account for the sparsity of the networks and are computationally more demanding or infeasible, especially in the settings of high dimension and low sample size. We introduce a threshold gradient descent (TGD) regularization procedure for estimating the sparse precision matrix in the setting of Gaussian graphical models and demonstrate its application to identifying genetic networks. Such a procedure is computationally feasible and can easily incorporate prior biological knowledge about the network structure. Simulation results indicate that the proposed method yields a better estimate of the precision matrix than the procedures that fail to account for the sparsity of the graphs. We also present the results on inference of a gene network for isoprenoid biosynthesis in Arabidopsis thaliana. These results demonstrate that the proposed procedure can indeed identify biologically meaningful genetic networks based on microarray gene expression data.  相似文献   

17.
18.
Resolving the issue of how Early Stone Age hominins acquired large mammal carcasses requires information on their feeding interactions with large carnivores. This ecological information and its behavioral and evolutionary implications are revealed most directly from the tooth, cut, and percussion marks on bone surfaces generated by hominin and carnivore feeding activities. This paper employs a bootstrap method, a form of random resampling with replacement, to refine published neotaphonomic models that use the assemblage-wide proportions of long bones bearing feeding traces to infer the sequences in which Plio-Pleistocene hominins and carnivores accessed flesh, marrow, and/or grease from carcasses. Results validate the sensitivity of the models for inferring hominin feeding ecology, which have been questioned on grounds shown here to be unfounded. The bootstrapped feeding trace models are applied to the late Pliocene larger mammal fossil assemblage from FLK 22 (Zinjanthropus site), Olduvai Gorge, Tanzania. High frequencies of tooth and percussion marking on long bone midshaft fragments from FLK 22 are most consistent with those feeding trace models that simulate hominin scavenging from carcasses defleshed by carnivores, while cut mark data indicate that hominins more often had access to upper forelimb flesh than upper hind limb flesh. Together, the bone surface modification data indicate that hominins typically gained secondary access to partially defleshed carnivore kills, but they also allow for the possibility of some carcasses being processed only by carnivores and only by hominins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号