首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Progressive myoclonus epilepsy (EPM1) is an autosomal recessive disorder, characterized by severe, stimulus-sensitive myoclonus and tonic-clonic seizures. The EPM1 locus was mapped to within 0.3 cM from PFKL in chromosome 21q22.3. The gene for the proteinase inhibitor cystatin B was recently localized in the EPM1 critical region, and mutations were identified in two EPM1 families. We have identified six nucleotide changes in the cystatin B gene of non-Finnish EPM1 families from northern Africa and Europe. The 426G-->C change in exon 1 results in a Gly4Arg substitution and is the first missense mutation described that is associated with EPM1. Molecular modeling predicts that this substitution severely affects the contact of cystatin B with papain. Mutations in the invariant AG dinucleotides of the acceptor sites of introns 1 and 2 probably result in abnormal splicing. A deletion of two nucleotides in exon 3 produces a frameshift and truncates the protein. Therefore, these four mutations are all predicted to impair the production of functional protein. These mutations were found in 7 of the 29 unrelated EPM1 patients analyzed, in homozygosity in 1, and in heterozygosity in the others. The remaining two sequence changes, 431G-->T and 2575A-->G, probably represent polymorphic variants. In addition, a tandem repeat in the 5' UTR (CCCCGCCCCGCG) is present two or three times in normal alleles. It is peculiar that in the majority of patients no mutations exist within the exons and splice sites of the cystatin B gene.  相似文献   

2.
3.
4.
5.
6.
Progressive myoclonus epilepsy type 1 (EPM1) is a neurodegenerative disease correlating with mutations of the cystatin B gene. Cystatin B is described as a monomeric protein with antiprotease function. This work shows that, in vivo, cystatin B has a polymeric structure, highly resistant to SDS, urea, boiling and sensitive to reducing agents and alkaline pH. Hydrogen peroxide increases the polymeric structure of the protein. Mass spectrometry analysis shows that the only component of the polymers is cystatin B. EPM1 mutants of cystatin B transfected in cultured cells are also polymeric. The banding pattern generated by a cysteine-minus mutant is different from that of the wild-type protein as it contains only monomers, dimers and some very high MW bands while misses components of MW intermediate between 25 and 250 kDa. Overexpression of wild-type or EPM1 mutants of cystatin B in neuroblastoma cells generates cytoplasmic aggregates. The cysteine-minus mutant is less prone to the formation of inclusion bodies. We conclude that cystatin B in vivo has a polymeric structure sensitive to the redox environment and that overexpression of the protein generates aggregates. This work describes a protein with a physiological role characterized by highly stable polymers prone to aggregate formation in vivo.  相似文献   

7.
The inherited epilepsy Unverricht‐Lundborg disease (EPM1) is caused by loss‐of‐function mutations in the cysteine protease inhibitor, cystatin B. Because cystatin B inhibits a class of lysosomal cysteine proteases called cathepsins, we hypothesized that increased proteolysis by one or more of these cathepsins is likely to be responsible for the seizure, ataxia, and neuronal apoptosis phenotypes characteristic of EPM1. To test this hypothesis and to identify which cysteine cathepsins contribute to EPM1, we have genetically removed three candidate cathepsins from cystatin B‐deficient mice and tested for rescue of their EPM1 phenotypes. Whereas removal of cathepsins L or S from cystatin B‐deficient mice did not ameliorate any aspect of the EPM1 phenotype, removal of cathepsin B resulted in a 36–89% reduction in the amount of cerebellar granule cell apoptosis depending on mouse age. The incidence of an incompletely penetrant eye phenotype was also reduced upon removal of cathepsin B. Because the apoptosis and eye phenotypes were not abolished completely and the ataxia and seizure phenotypes experienced by cystatin B‐deficient animals were not diminished, this suggests that another molecule besides cathepsin B is also responsible for the pathogenesis, or that another molecule can partially compensate for cathepsin B function. These findings establish cathepsin B as a contributor to the apoptotic phenotype of cystatin B‐deficient mice and humans with EPM1. They also suggest that the identification of cathepsin B substrates may further reveal the molecular basis for EPM1. © 2003 Wiley Periodicals, Inc. J Neurobiol 56: 315–327, 2003  相似文献   

8.
The inherited epilepsy Unverricht-Lundborg disease (EPM1) is caused by loss-of-function mutations in the cysteine protease inhibitor, cystatin B. Because cystatin B inhibits a class of lysosomal cysteine proteases called cathepsins, we hypothesized that increased proteolysis by one or more of these cathepsins is likely to be responsible for the seizure, ataxia, and neuronal apoptosis phenotypes characteristic of EPM1. To test this hypothesis and to identify which cysteine cathepsins contribute to EPM1, we have genetically removed three candidate cathepsins from cystatin B-deficient mice and tested for rescue of their EPM1 phenotypes. Whereas removal of cathepsins L or S from cystatin B-deficient mice did not ameliorate any aspect of the EPM1 phenotype, removal of cathepsin B resulted in a 36-89% reduction in the amount of cerebellar granule cell apoptosis depending on mouse age. The incidence of an incompletely penetrant eye phenotype was also reduced upon removal of cathepsin B. Because the apoptosis and eye phenotypes were not abolished completely and the ataxia and seizure phenotypes experienced by cystatin B-deficient animals were not diminished, this suggests that another molecule besides cathepsin B is also responsible for the pathogenesis, or that another molecule can partially compensate for cathepsin B function. These findings establish cathepsin B as a contributor to the apoptotic phenotype of cystatin B-deficient mice and humans with EPM1. They also suggest that the identification of cathepsin B substrates may further reveal the molecular basis for EPM1.  相似文献   

9.
The secondary structure of DNA has been shown to be an important component in the mechanism of expansion of the trinucleotide repeats that are associated with many neurodegenerative disorders. Recently, expansion of a dodecamer repeat, (CCCCGCCCCGCG)n upstream of cystatin B gene has been shown to be the most common mutation associated with Progressive Myoclonus Epilepsy (EPM1) of Unverricht-Lundborg type. We have investigated structure of oligonucleotides containing one, two and three copies of the EPM1 repeat sequences at physiological pH. CD spectra and anomalous faster gel electrophoretic mobilty indicates formation of intramolecularly folded structures that are formed independent of concentration. Hydroxylamine probing allowed us to identify the C residues that are involved in C.G base pairing. P1 nuclease studies elucidated the presence of unpaired regions in the folded back structures. UV melting studies show biphasic melting curves for the oligonucleotides containing two and three EPM1 repeats. Our data suggests multiple hairpin structures for two and three repeat containing oligonucleotides. In this paper we show that oligonucleotides containing EPM1 repeat adopt secondary structures that may facilitate strand slippage thereby causing the expansion.  相似文献   

10.
Zahler AM  Tuttle JD  Chisholm AD 《Genetics》2004,167(4):1689-1696
Mutations to the canonical +1G of introns, which are commonly found in many human inherited disease alleles, invariably result in aberrant splicing. Here we report genetic findings in C. elegans that aberrant splicing due to +1G mutations can be suppressed by U1 snRNA mutations. An intronic +1G-to-U mutation, e936, in the C. elegans unc-73 gene causes aberrant splicing and loss of gene function. We previously showed that mutation of the sup-39 gene promotes splicing at the mutant splice donor in e936 mutants. We demonstrate here that sup-39 is a U1 snRNA gene; suppressor mutations in sup-39 are compensatory substitutions in the 5' end, which enhance recognition of the mutant splice donor. sup-6(st19) is an allele-specific suppressor of unc-13(e309), which contains an intronic +1G-to-A transition. The e309 mutation activates a cryptic splice site, and sup-6(st19) restores splicing to the mutant splice donor. sup-6 also encodes a U1 snRNA and the mutant contains a compensatory substitution at its 5' end. This is the first demonstration that U1 snRNAs can act to suppress the effects of mutations to the invariant +1G of introns. These findings are suggestive of a potential treatment of certain alleles of inherited human genetic diseases.  相似文献   

11.
12.
Peters plus syndrome is an autosomal recessive rare disorder comprising ocular anterior segment dysgenesis, short stature, hand abnormalities, distinctive facial features, and often other major/minor additional defects. Peters plus syndrome is related to mutations in the B3GALTL gene with only seven recently reported mutations, leading to the inactivation of the B1, 3-glucosyltransferase. In this study, we screened the B3GALTL gene in two unrelated patients with typical Peters plus syndrome. A novel homozygous c.597-2A>G mutation was identified in both patients. Bioinformatic analyses showed that this mutation modulates the pre mRNA secondary structure of the gene, and decreases the score value related to the formation of splicing loops. Moreover, the c.597-2A>G mutation is located in a CpG Island of the B3GALTL gene, suggesting a potential epigenetic role of this position including gene's methylation and regulation. These data confirm an important role of the B3GALTL gene test that provides diagnosis confirmation and improves genetic counseling for the families.  相似文献   

13.
14.
Hereditary cystatin C amyloid angiopathy (HCCAA) is an autosomal dominant disorder characterized by the deposition of amyloid in most investigated tissues. The main component of the amyloid deposits is a variant of the cysteine proteinase inhibitor cystatin C, and the most serious consequence of the disease is that amyloid deposition in the cerebral arteries leads to a massive brain hemorrhage and death before 40 years of age. HCCAA has been shown to be caused by a T → A point mutation in the codon for leucine at position 68 in exon 2 of the cystatin C gene, which results in a leucine → glutamine amino acid substitution in the cystatin C molecule. Since the HCCAA-causing mutation abolishes an AluI restriction site in the cystatin C gene, analysis of this AluI restriction fragment-length polymorphism (RFLP) enables simple and accurate molecular diagnosis of HCCAA. One hundred ninety-one individuals have now been screened for the HCCAA causing mutation, including a fetus for prenatal diagnosis. Thirty-six individuals belonging to nine Icelandic families have been found to have the mutation and it is highly probable that these families descend from a common ancestor.  相似文献   

15.
16.
17.
Lafora disease is an autosomal recessive form of progressive myoclonus epilepsy with no effective therapy. Although the outcome is always unfavorable, onset of symptoms and progression of the disease may vary. We aimed to identify modifier genes that may contribute to the clinical course of Lafora disease patients with EPM2A or EPM2B mutations. We established a list of 43 genes coding for proteins related to laforin/malin function and/or glycogen metabolism and tested common polymorphisms for possible associations with phenotypic differences using a collection of Lafora disease families. Genotype and haplotype analysis showed that PPP1R3C may be associated with a slow progression of the disease. The PPP1R3C gene encodes protein targeting to glycogen (PTG). Glycogen targeting subunits play a major role in recruiting type 1 protein phosphatase (PP1) to glycogen-enriched cell compartments and in increasing the specific activity of PP1 toward specific glycogenic substrates (glycogen synthase and glycogen phosphorylase). Here, we report a new mutation (c.746A>G, N249S) in the PPP1R3C gene that results in a decreased capacity to induce glycogen synthesis and a reduced interaction with glycogen phosphorylase and laforin, supporting a key role of this mutation in the glycogenic activity of PTG. This variant was found in one of two affected siblings of a Lafora disease family characterized by a remarkable mild course. Our findings suggest that variations in PTG may condition the course of Lafora disease and establish PTG as a potential target for pharmacogenetic and therapeutic approaches.  相似文献   

18.
19.
20.
EPM1 is a rare progressive myoclonus epilepsy accompanied by apoptosis in the cerebellum of patients. Mutations in the gene of stefin B (cystatin B) are responsible for the primary defect underlying EPM1. Taking stefin B aggregates as a model we asked what comes first, protein aggregation or oxidative stress, and how these two processes correlate with cell death.We studied the aggregation in cells of the stefin B wild type, G4R mutant, and R68X fragment before (Ceru et al., 2010, Biol. Cell). The present study was performed on two more missense mutants of human stefin B, G50E and Q71P, and they similarly showed numerous aggregates upon overexpression. Mutant- and oligomer-dependent increase in oxidative stress and cell death in cells bearing aggregates was shown. On the other hand, there was no correlation between the size and number of the aggregates and cell death. We suggest that differences in toxicity of the aggregates depend on whether they are in oligomeric/protofibrillar or fibrillar form. This in turn likely depends on the mutant's 3D structure where unfolded proteins show lower toxicity. Imaging by transmission electron microscopy showed that the aggregates in cells are of different types: bigger perinuclear, surrounded by membranes and sometimes showing vesicle-like invaginations, or smaller, punctual and dispersed throughout the cytoplasm. All EPM1 mutants studied were inactive as cysteine proteases inhibitors and in this way contribute to loss of stefin B functions. Relevance to EPM1 disease by gain in toxic function is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号