首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
Muscular dystrophies comprise a heterogeneous group of neuromuscular disorders, characterized by progressive muscle wasting, for which no satisfactory treatment exists. Multiple stem cell populations, both of adult or embryonic origin, display myogenic potential and have been assayed for their ability to correct the dystrophic phenotype. To date, many of these described methods have failed, underlying the need to identify the mechanisms controlling myogenic potential, homing of donor populations to the musculature, and avoidance of the immune response. Recent results focus on the fresh isolation of satellite cells and the use of multiple growth factors to promote mesangioblast migration, both of which promote muscle regeneration. Throughout this chapter, various stem cell based therapies will be introduced and evaluated based on their potential to treat muscular dystrophy in an effective and efficient manner.  相似文献   

4.
5.
6.
7.
Stem cells   总被引:1,自引:0,他引:1  
Korochkin LI 《Ontogenez》2003,34(3):164-166
  相似文献   

8.
Stem cells     
Lederman L 《BioTechniques》2007,42(1):25, 27, 29
  相似文献   

9.
10.
What is clear is we are in the era of the stem cell and its potential in ameliorating human disease. Our perspective is generated from an in vivo model in a large animal that offers significant advantages (complete transplantation tolerance, large size and long life span). This review is an effort to meld our preclinical observations with others for the reader and to outline potential avenues to improve the present outlook for patients with diabetes. This effort exams the history or background of stem cell research in the laboratory and the clinic, types of stem cells, pluripotency or lack thereof based on a variety of pre-clinical investigations attempting endocrine pancreas recovery using stem cell transplantation. The focus is on the use of hematopoietic and mesenchymal stem cells. This review will also examine recent clinical experience following stem cell transplantation in patients with type 1 diabetes.  相似文献   

11.
12.
Stem cells: from epigenetics to microRNAs   总被引:11,自引:0,他引:11  
Cheng LC  Tavazoie M  Doetsch F 《Neuron》2005,46(3):363-367
  相似文献   

13.
14.
15.
The increasing momentum of stem cell research continues, with the better characterization of induced pluripotent stem (iPS) cells, the conversion of differentiated cells into different cell types and the use of pluripotent stem cells to generate whole tissues, among other advances. Here, six experts in the field of stem cell research compare different stem cell models and highlight the importance of pursuing complementary experimental approaches for a better understanding of pluripotency and differentiation and an informed approach to medical applications.  相似文献   

16.
Stem those cells     
《Current biology : CB》2006,16(18):R778-R779
  相似文献   

17.
18.
Recently much effort has resulted in papers on how stem cells can be generated from adult tissues in mice, but the salamanders do this routinely. Salamanders can regenerate most of their body parts, such as limbs, eyes, jaw, brain (and spinal cord), heart, etc. Regeneration in salamanders starts by dedifferentiation of the terminally differentiated tissues at the site of injury. The dedifferentiated cells can then differentiate to reconstitute the lost tissues. This transdifferentiation in an adult animal is unprecedented among vertebrates and does not involve recruitment of stem cells. One of the ideas is that such reprogramming of terminally differentiated cells might involve mechanisms that are similar to the maintenance of embryonic stem cells. In the stem cell field much emphasis has been recently given to the reprogramming of adult cells (such as skin fibroblasts) to revert to ES or pluripotent stem cells. It is our conviction that generation of dedifferentiated cells in salamanders and stem cells, such as the ones seen in repair in mammals share molecular signatures. This mini review will discuss these issues and ideas that could unite the stem cell biology with the classical regeneration models.  相似文献   

19.
20.
A recent meeting titled "Conserved Mechanisms of Stem Cell Control and Regeneration" was held at the Biopharmaceutical Technology Center Institute (BTCI) in Madison, Wisconsin. The diversity of stem cells and biological contexts discussed highlight the field's rapid progress in deciphering the molecular basis of stem cell functions and emphasize the challenges facing the future exploitation of these cells as therapeutic vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号