首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co-operative versus independent transport of different cargoes by Kinesin-1   总被引:1,自引:0,他引:1  
Kinesin motors drive the intracellular transport of multiple cargoes along microtubule tracks; yet, how kinesins discriminate among their many potential cargoes is unknown. We tested whether Kinesin-1 cargoes compete, co-operate or are transported independently of each other. We focused on Kinesin-1 cargoes that bind directly to the kinesin light chain (KLC) subunit, namely the c-Jun NH2-terminal kinase-interacting proteins (JIPs) 1 and 3, Kidins220/ARMS and PAT1. Overexpression of individual cargo proteins in differentiated CAD cells resulted in mislocalization of the endogenous protein but had no effect on localization of other cargo proteins to neurite tips. Thus, while transport of distinct cargoes is saturable, they do not compete with each other. Interestingly, we found that low expression of JIP1 or JIP3 enhanced the transport of the other JIP to neurite tips. Moreover, JIP1 and JIP3 require each other for transport. Co-operative transport is due to an interaction between JIP1 and JIP3 as well as distinct binding sites on the KLC tetratricopeptide repeat (TPR) bundle: the TPR groove binds to C-terminal residues of JIP1, whereas the TPR surface binds to internal residues in JIP3. Formation of a JIP1/JIP3/KLC complex is necessary for efficient JIP1 or JIP3 transport in neuronal cells. Thus, JIP scaffolding proteins are transported in a co-operative manner, despite the independent transport of other Kinesin-1 cargoes.  相似文献   

2.

Background  

In Drosophila, the transport regulator Klar displays tissue-specific localization: In photoreceptors, it is abundant on the nuclear envelope; in early embryos, it is absent from nuclei, but instead present on lipid droplets. Differential targeting of Klar appears to be due to isoform variation. Droplet targeting, in particular, has been suggested to occur via a variant C-terminal region, the LD domain. Although the LD domain is necessary and sufficient for droplet targeting in cultured cells, lack of specific reagents had made it previously impossible to analyze its role in vivo.  相似文献   

3.
Nuclear pore complexes (NPCs) facilitate selective transport of macromolecules across the nuclear envelope in interphase eukaryotic cells. NPCs are composed of roughly 30 different proteins (nucleoporins) of which about one third are characterized by the presence of phenylalanine-glycine (FG) repeat domains that allow the association of soluble nuclear transport receptors with the NPC. Two types of FG (FG/FxFG and FG/GLFG) domains are found in nucleoporins and Nup98 is the sole vertebrate nucleoporin harboring the GLFG-type repeats. By immuno-electron microscopy using isolated nuclei from Xenopus oocytes we show here the localization of distinct domains of Nup98. We examined the localization of the C- and N-terminal domain of Nup98 by immunogold-labeling using domain-specific antibodies against Nup98 and by expressing epitope tagged versions of Nup98. Our studies revealed that anchorage of Nup98 to NPCs through its C-terminal autoproteolytic domain occurs in the center of the NPC, whereas its N-terminal GLFG domain is more flexible and is detected at multiple locations within the NPC. Additionally, we have confirmed the central localization of Nup98 within the NPC using super resolution structured illumination fluorescence microscopy (SIM) to position Nup98 domains relative to markers of cytoplasmic filaments and the nuclear basket. Our data support the notion that Nup98 is a major determinant of the permeability barrier of NPCs.  相似文献   

4.
5.
The discovery of roles for arginine methylation in intracellular transport and mRNA splicing has focused attention on the methylated arginine–glycine (RG)-rich domains found in many eukaryotic RNA-binding proteins. Sequence similarity among these highly repetitive RG domains, combined with interactions between RG-rich proteins, raises the question of whether these regions are general interaction motifs or whether there is specificity within these domains. Using the essential Saccharomyces cerevisiae mRNA-binding protein Npl3 (ScNpl3) as a model system, we first tested the importance of the RG domain for protein function. While Npl3 lacking the RG domain could not support growth of cells lacking Npl3, surprisingly, expression of the RG domain alone supported partial growth of these cells. To address the specificity of this domain, we created chimeric forms of ScNpl3 with RG-rich domains of S. cerevisiae nucleolar proteins, Gar1 and Nop1 (ScGar1, ScNop1), or of the Candida albicans Npl3 ortholog (CaNpl3). Whereas the CaNpl3 RG chimeric protein retained nearly wild-type function in S. cerevisiae, the ScGar1 and ScNop1 RG domains significantly reduced Npl3 function and self-association, indicating RG domain specificity. Nuclear localization of Npl3 also requires specific RG sequences, yet heterologous RG domains allow similar modulation of Npl3 transport by arginine methylation.  相似文献   

6.
K Matter  W Hunziker  I Mellman 《Cell》1992,71(5):741-753
In MDCK cells, transport of membrane proteins to the basolateral plasma membrane has been shown to require a distinct cytoplasmic domain determinant. Although the determinant is often related to signals used for localization in clathrin-coated pits, inactivation of the coated pit domain in the human LDL receptor did not affect basolateral targeting. By expressing mutant and chimeric LDL receptors, we have now identified two independently acting signals that are individually sufficient for basolateral targeting. The two determinants mediate basolateral sorting with different efficiencies, but both contain tyrosine residues critical for activity. The first determinant was colinear with, but distinct from, the coated pit domain of the receptor. The second was found in the C-terminal region of the cytoplasmic domain of the receptor and, although tyrosine-dependent, did not mediate endocytosis. The results suggest that membrane proteins can have functionally redundant signals for basolateral transport and that a tyrosine-containing motif may be a common feature of multiple intracellular sorting events.  相似文献   

7.
Golgi-localized gamma-ear homology domain, ADP-ribosylation factor (ARF)-binding proteins (GGAs) facilitate distinct steps of post-Golgi traffic. Human and yeast GGA proteins are only ~25% identical, but all GGA proteins have four similar domains based on function and sequence homology. GGA proteins are most conserved in the region that interacts with ARF proteins. To analyze the role of ARF in GGA protein localization and function, we performed mutational analyses of both human and yeast GGAs. To our surprise, yeast and human GGAs differ in their requirement for ARF interaction. We describe a point mutation in both yeast and mammalian GGA proteins that eliminates binding to ARFs. In mammalian cells, this mutation disrupts the localization of human GGA proteins. Yeast Gga function was studied using an assay for carboxypeptidase Y missorting and synthetic temperature-sensitive lethality between GGAs and VPS27. Based on these assays, we conclude that non-Arf-binding yeast Gga mutants can function normally in membrane trafficking. Using green fluorescent protein-tagged Gga1p, we show that Arf interaction is not required for Gga localization to the Golgi. Truncation analysis of Gga1p and Gga2p suggests that the N-terminal VHS domain and C-terminal hinge and ear domains play significant roles in yeast Gga protein localization and function. Together, our data suggest that yeast Gga proteins function to assemble a protein complex at the late Golgi to initiate proper sorting and transport of specific cargo. Whereas mammalian GGAs must interact with ARF to localize to and function at the Golgi, interaction between yeast Ggas and Arf plays a minor role in Gga localization and function.  相似文献   

8.
The members of the ABC transporter family transport a wide variety of molecules into or out of cells and cellular compartments. Apart from a translocation pore, each member possesses two similar nucleoside triphosphate-binding subunits or domains in order to couple the energy-providing reaction with transport. In the maltose transporter of several Gram-negative bacteria and the archaeon Thermo coccus litoralis, the nucleoside triphosphate-binding subunit contains a C-terminal regulatory domain. A dimer of the subunit is attached cytoplasmically to the translocation pore. Here we report the crystal structure of this dimer showing two bound pyrophosphate molecules at 1.9 A resolution. The dimer forms by association of the ATPase domains, with the two regulatory domains attached at opposite poles. Significant deviation from 2-fold symmetry is seen at the interface of the dimer and in the regions corresponding to those residues known to be in contact with the translocation pore. The structure and its relationship to function are discussed in the light of known mutations from the homologous Escherichia coli and Salmonella typhimurium proteins.  相似文献   

9.
In Saccharomyces cerevisiae, the spindle pole body (SPB) is the functional homolog of the mammalian centrosome, responsible for the organization of the tubulin cytoskeleton. Cytoplasmic (astral) microtubules essential for the proper segregation of the nucleus into the daughter cell are attached at the outer plaque on the SPB cytoplasmic face. Previously, it has been shown that Cnm67p is an integral component of this structure; cells deleted for CNM67 are lacking the SPB outer plaque and thus experience severe nuclear migration defects. With the use of partial deletion mutants of CNM67, we show that the N- and C-terminal domains of the protein are important for nuclear migration. The C terminus, not the N terminus, is essential for Cnm67p localization to the SPB. On the other hand, only the N terminus is subject to protein phosphorylation of a yet unknown function. Electron microscopy of SPB serial thin sections reveals that deletion of the N- or C-terminal domains disturbs outer plaque formation, whereas mutations in the central coiled-coil domain of Cnm67p change the distance between the SPB core and the outer plaque. We conclude that Cnm67p is the protein that connects the outer plaque to the central plaque embedded in the nuclear envelope, adjusting the space between them by the length of its coiled-coil.  相似文献   

10.
In eukaryotic cells, importin alpha is the major carrier for transport protein cargoes into the nucleus. We characterize here kapA, the single Aspergillus nidulans gene encoding an importin alpha. Using an affinity approach, we identify six potential interactors of KapA(50), a deleted version of KapA lacking the autoinhibitory importin-beta-binding domain. One such interactor is NapB, the A. nidulans orthologue of Saccharomyces cerevisiae Vps75p, a histone chaperone member of the Nap/SET family of proteins that additionally plays a cytosolic role in vacuolar protein sorting. NapB, but not its close relative NapA (the A. nidulans orthologue of yeast Nap1p) interacts directly with KapA(50) in pull down assays, despite the fact that NapB does not contain a classical nuclear localization sequence. NapB is a nuclear protein which exits nuclei at the onset of mitosis when two simultaneous mechanisms might be acting, the partial disassembly of the nuclear pore complexes and as yet unidentified posttranslational modification of NapB. The mitotic cytosolic localization of NapB might facilitate its putative role in the sorting of protein cargoes to the vacuole. In addition, we show that NapB and the mitotic B-type cyclin NimE compete for in vitro binding to KapA.  相似文献   

11.
In eukaryotic cells, importin alpha is the major carrier for transport protein cargoes into the nucleus. We characterize here kapA, the single Aspergillus nidulans gene encoding an importin alpha. Using an affinity approach, we identify six potential interactors of KapA(50), a deleted version of KapA lacking the autoinhibitory importin-beta-binding domain. One such interactor is NapB, the A. nidulans orthologue of Saccharomyces cerevisiae Vps75p, a histone chaperone member of the Nap/SET family of proteins that additionally plays a cytosolic role in vacuolar protein sorting. NapB, but not its close relative NapA (the A. nidulans orthologue of yeast Nap1p) interacts directly with KapA(50) in pull down assays, despite the fact that NapB does not contain a classical nuclear localization sequence. NapB is a nuclear protein which exits nuclei at the onset of mitosis when two simultaneous mechanisms might be acting, the partial disassembly of the nuclear pore complexes and as yet unidentified posttranslational modification of NapB. The mitotic cytosolic localization of NapB might facilitate its putative role in the sorting of protein cargoes to the vacuole. In addition, we show that NapB and the mitotic B-type cyclin NimE compete for in vitro binding to KapA.  相似文献   

12.
13.
Molecular motor proteins are responsible for long-range transport of vesicles and organelles. Recent works have elucidated the richness of the transport complex, with multiple teams of similar and dissimilar motors and their cofactors attached to individual cargoes. The interaction among these different proteins, and with the microtubules along which they translocate, results in the intricate patterns of cargo transport observed in cells. High-precision and high-bandwidth measurements are required to capture the dynamics of these interactions, yet the crowdedness in the cell necessitates performing such measurements in vitro. Here, we show that endogenous cargoes, lipid droplets purified from Drosophila embryos, can be used to perform high-precision and high-bandwidth optical trapping experiments to study motor regulation in vitro. Purified droplets have constituents of the endogenous transport complex attached to them and exhibit long-range motility. A novel method to determine the quality of the droplets for high-resolution measurements in an optical trap showed that they compare well with plastic beads in terms of roundness, homogeneity, position sensitivity, and trapping stiffness. Using high-resolution and high-bandwidth position measurements, we demonstrate that we can follow the series of binding and unbinding events that lead to the onset of active transport.  相似文献   

14.
In Escherichia coli FtsZ assembles into a Z ring at midcell while assembly at polar sites is prevented by the min system. MinC, a component of this system, is an inhibitor of FtsZ assembly that is positioned within the cell by interaction with MinDE. In this study we found that MinC consists of two functional domains connected by a short linker. When fused to MalE the N-terminal domain is able to inhibit cell division and prevent FtsZ assembly in vitro. The C-terminal domain interacts with MinD, and expression in wild-type cells as a MalE fusion disrupts min function, resulting in a minicell phenotype. We also find that MinC is an oligomer, probably a dimer. Although the C-terminal domain is clearly sufficient for oligomerization, the N-terminal domain also promotes oligomerization. These results demonstrate that MinC consists of two independently functioning domains: an N-terminal domain capable of inhibiting FtsZ assembly and a C-terminal domain responsible for localization of MinC through interaction with MinD. The fusion of these two independent domains is required to achieve topological regulation of Z ring assembly.  相似文献   

15.
Previous data has shown that adenylyl cyclase type 6 (AC6) is expressed principally in lipid rafts or caveolae of cardiac myocytes and other cell types while certain other isoforms of AC are excluded from these microdomains. The mechanism by which AC6 is localized to lipid rafts or caveolae is unknown. In this study, we show AC6 is localized in lipid rafts of COS-7 cells (expressing caveolin-1) and in HEK-293 cells or cardiac fibroblasts isolated from caveolin-1 knock-out mice (both of which lack prototypical caveolins). To determine the region of AC6 that confers raft localization, we independently expressed each of the major intracellular domains, the N-terminus, C1 and C2 domains, and examined their localization with various approaches. The N-terminus did not associate with lipid rafts or caveolae of either COS-7 or HEK-293 cells nor did it immunoprecipitate with caveolin-1 when expressed in COS-7 cells. By contrast, the C1 and C2 domains each associated with lipid rafts to varying degrees and were present in caveolin-1 immunoprecipitates. There were no differences in the pattern of localization of either the C1 or C2 domains between COS-7 and HEK-293 cells. Further dissection of the C1 domain into four individual proteins indicated that the N-terminal half of this domain is responsible for its raft localization. To probe for a role of a putative palmitoylation motif in the C-terminal portion of the C2 domain, we expressed various truncated forms of AC6 lacking most or all of the C-terminal 41 amino acids. These truncated AC6 proteins were not altered in terms of their localization in lipid rafts or their catalytic activity, implying that this C-terminal region is not required for lipid raft targeting of AC6. We conclude that while the C1 domain may be most important, both the C1 and C2 domains of AC6 play a role in targeting AC6 to lipid rafts.  相似文献   

16.
Vertebrate type V myosins (MyoV) Myo5a, Myo5b, and Myo5c mediate transport of several different cargoes. All MyoV paralogs bind to cargo complexes mainly by their C-terminal globular domains. In absence of cargo, the globular domain of Myo5a inhibits its motor domain. Here, we report low-resolution SAXS models for the globular domains from human Myo5a, Myo5b, and Myo5c, which suggest very similar overall shapes of all three paralogs. We determined the crystal structures of globular domains from Myo5a and Myo5b, and provide a homology model for human Myo5c. When we docked the Myo5a crystal structure into a previously published electron microscopy density of the autoinhibited full-length Myo5a, only one domain orientation resulted in a good fit. This structural arrangement suggests the participation of additional region of the globular domain in autoinhibition. Quantification of the interaction of the Myo5a globular domain with its motor complex revealed a tight binding with dissociation half-life in the order of minutes, suggesting a rather slow transition between the active and inactive states.  相似文献   

17.
The SNARE proteins are required for membrane fusion during intracellular vesicular transport and for its specificity. Only the unique combination of SNARE proteins (cognates) can be bound and can lead to membrane fusion, although the characteristics of the possible specificity of the binding combinations encoded in the SNARE sequences have not yet been determined. We discovered by whole genome sequence analysis that sequence motifs (conserved sequences) in the SNARE motif domains for each protein group correspond to localization sites or transport pathways. We claim that these motifs reflect the specificity of the binding combinations of SNARE motif domains. Using these motifs, we could classify SNARE proteins from 48 organisms into their localization sites or transport pathways. The classification result shows that more than 10 SNARE subgroups are kingdom specific and that the SNARE paralogs involved in the plasma membrane-related transport pathways have developed greater variations in higher animals and higher plants than those involved in the endoplasmic reticulum-related transport pathways throughout eukaryotic evolution.  相似文献   

18.
PDZ domains are protein-protein interaction modules that recognize specific C-terminal sequences to assemble protein complexes in multicellular organisms. By scanning billions of random peptides, we accurately map binding specificity for approximately half of the over 330 PDZ domains in the human and Caenorhabditis elegans proteomes. The domains recognize features of the last seven ligand positions, and we find 16 distinct specificity classes conserved from worm to human, significantly extending the canonical two-class system based on position -2. Thus, most PDZ domains are not promiscuous, but rather are fine-tuned for specific interactions. Specificity profiling of 91 point mutants of a model PDZ domain reveals that the binding site is highly robust, as all mutants were able to recognize C-terminal peptides. However, many mutations altered specificity for ligand positions both close and far from the mutated position, suggesting that binding specificity can evolve rapidly under mutational pressure. Our specificity map enables the prediction and prioritization of natural protein interactions, which can be used to guide PDZ domain cell biology experiments. Using this approach, we predicted and validated several viral ligands for the PDZ domains of the SCRIB polarity protein. These findings indicate that many viruses produce PDZ ligands that disrupt host protein complexes for their own benefit, and that highly pathogenic strains target PDZ domains involved in cell polarity and growth.  相似文献   

19.
Tethering complexes contribute to the specificity of membrane fusion by recognizing organelle features on both donor and acceptor membranes. The Golgi-associated retrograde protein (GARP) complex is required for retrograde traffic from both early and late endosomes to the trans-Golgi network (TGN), presenting a paradox as to how a single complex can interact specifically with vesicles from multiple upstream compartments. We have found that a subunit of the GARP complex, Vps54, can be separated into N- and C-terminal regions that have different functions. Whereas the N-terminus of Vps54 is important for GARP complex assembly and stability, a conserved C-terminal domain mediates localization to an early endocytic compartment. Mutation of this C-terminal domain has no effect on retrograde transport from late endosomes. However, a specific defect in retrieval of Snc1 from early endosomes is observed when recycling from late endosomes to the Golgi is blocked. These data suggest that separate domains recruit tethering complexes to different upstream compartments to regulate individual trafficking pathways.  相似文献   

20.
CLN6 is a polytopic membrane protein of unknown function resident in the endoplasmic reticulum (ER). Mutant CLN6 causes the lysosomal storage disorder neuronal ceroid lipofuscinosis. Defining the topology of CLN6, and the structural domains and motifs required for interaction with cytosolic and luminal proteins may allow insights into its function. In this study we analysed the topology, ER retention and oligomerization of CLN6. We demonstrated, by differential membrane permeabilization of transfected BHK cells using specific detergents and two distinct antibodies, that CLN6 contains an N-terminal cytoplasmic domain, seven transmembrane domains, and a luminal C terminus. Mutational analyses and confocal immunofluorescence microscopy showed that changes of potential ER localization signals in the N- or C-terminal domain (a triple arginine cluster, and a dileucine motif) did not alter the subcellular localization of CLN6. The deletion of a dilysine motif impaired partially the ER localization of CLN6. Furthermore, expression analyses of fusion and deletion constructs in non-neuronal and neuronal cells suggested that two portions of CLN6 contributed to its retention within the ER. We showed that the N-terminal domain was necessary but not sufficient for ER retention of CLN6 and that deletion of transmembrane domains 6 and 7 was accompanied with the loss of ER localization and, in some instances, trafficking to the cisGolgi. From these data we concluded that CLN6 maintains its ER localization by expressing retention signals present in both the N-terminal cytosolic domain and in the carboxy-proximal transmembrane domains 6 and 7. Additionally, the ability of CLN6 to homodimerize may also prevent exit from the ER via an interaction with membrane-associated factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号