首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have completed identification of all the ribosomal proteins (RPs) in spinach plastid (chloroplast) ribosomal 50 S subunit via a proteomic approach using two-dimensional electrophoresis, electroblotting/protein sequencing, high performance liquid chromatography purification, polymerase chain reaction-based screening of cDNA library/nucleotide sequencing, and mass spectrometry (reversed-phase HPLC coupled to electrospray ionization mass spectrometry and electrospray ionization mass spectrometry). Spinach plastid 50 S subunit comprises 33 proteins, of which 31 are orthologues of Escherichia coli RPs and two are plastid-specific RPs (PSRP-5 and PSRP-6) having no homologues in other types of ribosomes. Orthologues of E. coli L25 and L30 are absent in spinach plastid ribosome. 25 of the plastid 50 S RPs are encoded in the nuclear genome and synthesized on cytosolic ribosomes, whereas eight of the plastid RPs are encoded in the plastid organelle genome and synthesized on plastid ribosomes. Sites for transit peptide cleavages in the cytosolic RP precursors and formyl Met processing in the plastid-synthesized RPs were established. Post-translational modifications were observed in several mature plastid RPs, including multiple forms of L10, L18, L31, and PSRP-5 and N-terminal/internal modifications in L2, L11 and L16. Comparison of the RPs in gradient-purified 70 S ribosome with those in the 30 and 50 S subunits revealed an additional protein, in approximately stoichiometric amount, specific to the 70 S ribosome. It was identified to be plastid ribosome recycling factor. Combining with our recent study of the proteins in plastid 30 S subunit (Yamaguchi, K., von Knoblauch, K., and Subramanian, A. R. (2000) J. Biol. Chem. 275, 28455-28465), we show that spinach plastid ribosome comprises 59 proteins (33 in 50 S subunit and 25 in 30 S subunit and ribosome recycling factor in 70 S), of which 53 are E. coli orthologues and 6 are plastid-specific proteins (PSRP-1 to PSRP-6). We propose the hypothesis that PSRPs were evolved to perform functions unique to plastid translation and its regulation, including protein targeting/translocation to thylakoid membrane via plastid 50 S subunit.  相似文献   

3.
Chloroplast ribosomal protein L32 is encoded in the chloroplast genome   总被引:3,自引:0,他引:3  
The 50 S subunit of chloroplast ribosomes was prepared from tobacco leaves. The proteins were fractionated and the N-terminal amino acid sequence of a 14 kDa protein was determined. This sequence matches the N-terminal sequence deduced from ORF55 located between ndhF and trnL on the small single-copy region of tobacco chloroplast DNA. The deduced protein shows homology to E. coli and B. stearothermophilus L32 proteins, and it has been named as CL32 and ORF55 as rpl32. The tobacco chloroplast genome therefore contains 21 different ribosomal protein genes.  相似文献   

4.
Detailed studies of ribosomal proteins (RPs), essential components of the protein biosynthetic machinery, have been hampered by the lack of readily accessible chromosomal deletions of the corresponding genes. Here, we report the systematic genomic deletion of 41 individual RP genes in Escherichia coli, which are not included in the Keio collection. Chromosomal copies of these genes were replaced by an antibiotic resistance gene in the presence of an inducible, easy-to-exchange plasmid-born allele. Using this knockout collection, we found nine RPs (L15, L21, L24, L27, L29, L30, L34, S9, and S17) nonessential for survival under induction conditions at various temperatures. Taken together with previous results, this analysis revealed that 22 of the 54 E. coli RP genes can be individually deleted from the genome. These strains also allow expression of truncated protein variants to probe the importance of RNA-protein interactions in functional sites of the ribosome. This set of strains should enhance in vivo studies of ribosome assembly/function and may ultimately allow systematic substitution of RPs with RNA.  相似文献   

5.
6.
Summary Antibodies to individual chloroplast ribosomal (r-)proteins ofChlamydomonas reinhardtii synthesized in either the chloroplast or the cytoplasm were used to examine the relatedness ofChlamydomonas r-proteins to r-proteins from the spinach (Spinacia oleracea) chloroplast,Escherichia coli, and the cyanobacteriumAnabaena 7120. In addition,35S-labeled chloroplast r-proteins from large and small subunits ofC. reinhardtii were coelectrophoresed on 2-D gels with unlabeled r-proteins from similar subunits of spinach chloroplasts,E. coli, andAnabaena to compare their size and net charge. Comigrating protein pairs were not always immunologically related, whereas immunologically related r-protein pairs often did not comigrate but differed only slightly in charge and molecular weight. In constrast, when35S-labeled chloroplast r-proteins from large and small subunits of a closely related speciesC. smithii were coelectrophoresed with unlabeledC. reinhardtii chloroplast r-proteins, only one pair of proteins from each subunit showed a net displacement in mobility.Analysis of immunoblots of one-dimensional SDS and two-dimensional urea/SDS gels of large and small subunit r-proteins from these species revealed more antigenic conservation among the four species of large subunit r-proteins than small subunit r-proteins.Anabaena r-proteins showed the greatest immunological similarity toC. reinhardtii chloroplast r-proteins. In general, antisera made against chloroplast-synthesized r-proteins inC. reinhardtii showed much higher levels of cross-reactivity with r-proteins fromAnabaena, spinach, andE. coli than did antisera to cytoplasmically synthesized r-proteins. All spinach r-proteins that cross-reacted with antisera to chloroplast-synthesized r-proteins ofC. reinhardtii are known to be made in the chloroplast (Dorne et al. 1984b). FourE. coli r-proteins encoded by the S10 operon (L2, S3, L16, and L23) were found to be conserved immunologically among the four species. Two of the large subunit r-proteins, L2 and L16, are essential for peptidyltransferase activity. The third (L23) and two otherE. coli large subunit r-proteins (L5 and L27) that have immunological equivalents among the four species are functionally related to but not essential for peptidyltransferase activity.  相似文献   

7.
We have cloned a novel nuclear gene for a ribosomal protein of rice and Arabidopsis that is like the bacterial ribosomal protein S9. To determine the subcellular localization of the gene product, we fused the N-terminal region and green fluorescent protein and expressed it transiently in rice seedlings. Localized fluorescence was detectable only in chloroplasts, indicating that this nuclear gene encodes chloroplast ribosomal protein S9. The N-terminal region of rice ribosomal protein S9 was found to have a high sequence similarity to the transit peptide region of the rice chloroplast ribosomal protein L12, suggesting that these transit peptides have a common lineage.  相似文献   

8.
9.
We have developed a polymerase chain reaction (PCR) method for sequencing of tobacco chloroplast genome. In a mixture containing chloroplast DNA, 5-end-labeled oligonucleotide primer, Taq DNA polymerase and reaction buffer, we were able to sequence a segment of chloroplast 16S rRNA gene. The results showed that the 750 bp of DNA sequenced were identical to the sequence reported, indicating that direct sequencing method that we have developed is useful for the sequencing of chloroplast genome. To analyze the chloroplast genome more rapidly in those in vitro grown plantlets, we also developed a simple method which is applicable for the amplifications and sequencing of chloroplast 16S rRNA fragment from either 0.15 g of tobacco leaf or stem tissue. The readable sequences obtained from the presented methods were consistent with the published sequence.  相似文献   

10.
The nucleotide sequence of the segment of maize chloroplast DNA lying between the map coordinate positions 32.59 and 32.98 Kb and containing the secX gene has been determined. The derived amino acid sequence of maize chloroplast secX is 95%, 87% and 62% identical to the corresponding derived amino acid sequences from two plant chloroplasts and Escherichia coli, respectively. It is also 70% identical to the experimentally determined amino acid sequence of a protein isolated from Bacillus stearothermophilus ribosomes. Separation of the 50S ribosomal subunit proteins of E. coli by reversed phase HPLC gave a peak which contained pure secX protein, as determined by N-terminal amino acid sequencing. Spinach chloroplast 50S subunit proteins separated by HPLC also gave a peak corresponding to pure secX protein. From these results we conclude that the secX gene in E. coli and in plant chloroplasts encodes a small (37-38 amino acid residues) ribosomal protein belonging to the 50S subunit. The same conclusion has been reached recently by A. Wada with respect to E. coli secX. In agreement with Wada, we name the secX protein L36. Its chloroplast gene is designated rpL36.  相似文献   

11.
Summary The 1805 bp spacer between the chloroplast ribosomal 16S and 7S RNA genes of Chlamydomonas reinhardii has been sequenced. It contains the genes of tRNA ala and tRNA ile which are both uninterrupted. The spacer includes several short direct and inverted repeats and a large palindromic structure which maps in the region where DNA rearrangements have occurred in other Chlamydomonas species.Paper presented at the First International Congress of Plant Molecular Biology (Savannah, GA, 1985).Paper presented at the First International Congress of Plant Molecular Biology (Savannah, GA, 1985).  相似文献   

12.
The gene encoding the ribosomal protein from Thermus thermophilus, TL5, which binds to the 5S rRNA, has been cloned and sequenced. The codon usage shows a clear preference for G/C rich codons that is characteristic for many genes in thermophilic bacteria. The deduced amino acid sequence consists of 206 residues. The sequence of TL5 shows a strong similarity to a general shock protein from Bacillus subtilis, named CTC. The protein CTC is homologous in its N-terminal part to the 5S rRNA binding protein, L25, from E coli. An alignment of the TL5, CTC and L25 sequences displays a number of residues that are totally conserved. No clear sequence similarity was found between TL5 and other proteins which are known to bind to 5S rRNA. The evolutionary relationship of a heat shock protein in mesophiles and a ribosomal protein in thermophilic bacteria as well as a possible role of TL5 in the ribosome are discussed.  相似文献   

13.
The ribosomal protein gene rps4 was cloned and sequenced from the chloroplast genome of Chlamydomonas reinhardtii. The N-terminal 213 amino acid residues of the S4 protein are encoded in the single-copy region (SCR) of the genome, while the C-terminal 44 amino acid residues are encoded in the inverted repeat (IR). The deduced 257 amino acid sequence of C. reinhardtii S4 is considerably longer (by 51–59 residues) than S4 proteins of other photosynthetic species and Escherichia coli, due to the presence of two internal insertions and a C-terminal extension. A short conserved C-terminal motif found in all other S4 proteins examined is missing from the C. reinhardtii protein. In E. coli, mutations in the S4 protein suppress the streptomycin-dependent (sd) phenotype of mutations in the S12 protein. Because we have been unable to identify similar S4 mutations among suppressors of an sd mutation in C. reinhardtii S12 obtained using UV mutagenesis, we made site-directed mutations [Arg68 (CGT) to Len (CTG and CTT)] in the wild-type rps4 gene equivalent to an E. coli Gln53 to Len ribosomal ambiguity mutation (ram), which suppresses the sd phenotype and decreases translational accuracy. These mutants were tested for their ability to transform the sd S 12 mutation of C. reinhardtii to streptomycin independence. The streptomycin-independent isolates obtained by biolistic transformation all possessed the original sd mutation in rps12, but none had the expected donor Leu68 mutations in rps4. Instead, six of 15 contained a Gln73 (CAA) to Pro (CCA) mutation five amino acids downstream from the predicted mutant codon, irrespective of rps4 donor DNA. Two others contained six- and ten-amino acid, in-frame insertions at S4 positions 90 and 92 that appear to have been induced by the biolistic process itself. Eight streptomycin-independent isolates analyzed had wild-type rps4 genes and may possess mutations identical to previously isolated suppressors of sd that define at least two additional chloroplast loci. Cloned rps4 genes from streptomycin-independent isolates containing the Gln73 to Pro mutation and the 6-amino acid insertion in r-protein S4 transform the sd strain to streptomycin independence.  相似文献   

14.
轮叶蒲桃(Syzygium grijsii)系桃金娘科(Myrtaceae)蒲桃属(Syzygium)常绿灌木,其开发前景较好,但其叶绿体基因组特征及系统发育关系尚未有相关报道。为弥补轮叶蒲桃基因组学方面的空缺,该文对轮叶蒲桃的叶绿体基因组进行了系统的研究。运用Illumina高通量测序,并在GetOrganelle平台进行完整组装,同时利用组装好的数据分析轮叶蒲桃叶绿体基因组的结构特征和系统发育关系,其中包括轮叶蒲桃叶绿体基因组结构、功能及特征、密码子偏好性分析、叶绿体基因组的比较分析和系统发育的分析。结果表明:(1)轮叶蒲桃叶绿体基因组大小为158 591 bp,包含129个基因。其中,rRNA基因8个,tRNA基因37个,蛋白编码基因84个。分析检测到39个重复序列和84个SSR位点。(2)密码子偏好性分析发现轮叶蒲桃叶绿体基因组中末端存在对A/U的偏性,使用最多的是编码亮氨酸的密码子。(3)与近缘种比较,轮叶蒲桃的边界长度保守,边界处的基因种类与多个蒲桃属物种相似;轮叶蒲桃叶绿体基因组在LSC和SSC区变异度较大,有45处0.010i<0....  相似文献   

15.
Tobacco chloroplast ribosomal protein L12 was isolated as a ssDNA-cellulose-binding protein from a chloroplast soluble protein fraction. Based on the N-terminal amino acid sequence of chloroplast L12, a cDNA clone was isolated and characterized. The precursor protein deduced from the DNA sequence consists of a transit peptide of 53 amino acid residues and a mature L12 protein of 133 amino acid residues. The chloroplast L12 protein was synthesized with a reticulocyte lysate and subjected to nucleic acid-binding assays. L12 synthesized in vitro does not bind to ssDNA, dsDNA nor ribonucleotide homopolymers, but it binds to cellulose matrix.  相似文献   

16.
17.
E. coli ribosomal DNA has been used to probe maize mitochondrial DNA. It hybridizes primarily with chloroplast ribosomal DNA sequences and with fungal and bacterial sequences which may contaminate the mtDNA preparations. It also hybridizes to the chloroplast 16S ribosomal RNA gene sequence present in the mitochondrial genome (1) as well as to the mitochondrial 18S ribosomal RNA gene sequence. Weak sequence homology was detected between E. coli rDNA and the mitochondrial 26S ribosomal RNA gene.  相似文献   

18.
19.
Summary The circular chloroplast DNA from three species of plants in the taxonomic family Leguminosae were examined using electron microscopic techniques and restriction endonuclease digestion. Chloroplast DNAs from chickpea (Cicer arietinum), mung bean (Vigna radiata), and soy bean (Glycine max) were found to range in size from 119–151 kilobase pairs by contour length measurements. Sizes of the chloroplast DNAs have been further confirmed using different restriction endonucleases. Two of the chloroplast DNAs examined, soy bean and mung bean, contain a region approximately 15.9–18% of their monomer length that is repeated in reverse polarity. This repeated region separates a small unique region that ranges in size from 18.75–20.4 kilobase pairs and a large unique region that ranges in size from 73.4–85 kbp. This feature was not found in the chloroplast DNA of chickpea. R-loop hybridizations performed using chloroplast ribosomal RNAs demonstrate that the two ribosomal gene sets of the mung been and soy bean are arranged in inverted orientation within this repeated region. In contrast, the chickpea chloroplast DNA posesses a single ribosomal RNA gene set in the circular molecule. In all three chloroplast DNAs examined, the genes encoding the chloroplast 23S and 16S ribosomal RNA genes are separated by a spacer region which ranges in size from 2.2 to 2.48 kbp.  相似文献   

20.
The complete amino acid sequences of ribosomal proteins S11 from the Gram-positive eubacterium Bacillus stearothermophilus and of S19 from the archaebacterium Halobacterium marismortui have been determined. A search for homologous sequences of these proteins revealed that they belong to the ribosomal protein S11 family. Homologous proteins have previously been sequenced from Escherichia coli as well as from chloroplast, yeast and mammalian ribosomes. A pairwise comparison of the amino acid sequences showed that Bacillus protein S11 shares 68% identical residues with S11 from Escherichia coli and a slightly lower homology (52%) with the homologous chloroplast protein. The halophilic protein S19 is more related to the eukaryotic (45–49%) than to the eubacterial counterparts (35%)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号