首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Substrate specificities of tobacco chitinases   总被引:15,自引:0,他引:15  
Ten tobacco chitinases (1,4-N-acetyl-β-D-glucosaminide glycanhydrolase, EC 3.2.1.14) were purified from tobacco leaves hypersensitively reacting to tobacco mosaic virus. The 10 enzymes, which belong to five distinct structural classes of plant chitinases, were incubated with several potential substrates such as chitin, a β-1,4 N-acetyl-D-glucosamine (GlcNAc) polymer, chitosan (partially deacetylated chitin), chitin oligomers of variable length and bacterial cell wall. Tobacco chitinases are all endo-type enzymes that liberate oligomers from chitin and are capable of processing the chito-oligomers further at differential rates. Chitin reaction products were separated and quantified by HPLC and differential kinetics of oligomer accumulation and degradation were observed with the distinct classes of chitinases. Depending on the substrate to be hydrolysed, each isoform displayed a different spectrum of activity. For example, class I isoforms were the most active on chitin and (GlcNAc)4–6 whereas class III basic isoforms were the most efficient in inducing bacterial lysis. Class V and class VI chitinases were shown to more readily hydrolyse chitin oligomers than the chitin polymer itself. Together, these data indicate that the 10 tobacco chitinases represent complementary enzymes which may have synergistic effects on their substrates. This paper discusses their implication in plant defense by attacking pathogen's structural components and in plant development by maturing signal molecules.  相似文献   

2.
Thermodynamic parameters for binding of N-acetylglucosamine (GlcNAc) oligomers to a family 18 chitinase, ChiB of Serratia marcescens, have been determined using isothermal titration calorimetry. Binding studies with oligomers of different lengths showed that binding to subsites −2 and +1 is driven by a favorable enthalpy change, while binding to the two other most important subsites, +2 and +3, is driven by entropy with unfavorable enthalpy. These remarkable unfavorable enthalpy changes are most likely due to favorable enzyme-substrate interactions being offset by unfavorable enthalpic effects of the conformational changes that accompany substrate-binding.  相似文献   

3.
We have experimentally defined the two major aspects of embryonic cell recognition-adhesion (ReAd), tissue type-specific ReAd and cell type-specific ReAd; we showed that they arise consecutively during cell differentiation, and that the former can function in the absence of the latter. Embryonic chick cells (retina and chondroblasts) in which differentiation was arrested by BrdU at an early stage, failed to express cell-type ReAd, yet they continued to display tissue-type ReAd: they distinguished tissue-self from non-self and selectively cohered with self. Our results indicate that tissue-type and cell-type ReAd represent distinct, separately controlled mechanisms. BrdU appears to be useful as a probe for investigating the regulation of these mechanisms, and as an experimental effector of differentiation abnormalities associated with defects in cell recognition.  相似文献   

4.
Five enzymes designated chitinase I, IIa, IIb, III, and IV have been isolated from the hepatopancreas of Pandalus borealis in a procedure including column chromatography on Q-Sepharose, Sephacryl S-200, phenyl-Superose and Superdex 75. The isolated enzymes were analysed by SDS PAGE. Chitinase I, III, and IV gave only one major band corresponding to 54–55 kDA. Chitinase IIa showed one major band at 61 kDA and two diminutive bands at 17 and 55 kDa, while chitinase IIb gave two major bands at 17 and 44 kDa. Estimated by gel filtration, the native molecular weights of chitinase I, IIa, IIb, III, and IV were 61, 69, 39, 57, and 54 kDa, respectively. The substrate and reaction specificities of the isolated chitinases were investigated, and the results show that the isolated enzymes are true chitinases. They do not hydrolyse N,N′-diacetylchitobiose or p-Nitrophenyl-N-acetyl-β-D-glucosaminide, but express activities when longer chitooligosaccharides or nitrophenylated chitooligosaccharides are used as substrates. Chitinase I and IIa gave an initial random cleavage pattern and might be classified as endochitinases, while chitinase III and IV released dimeric units from the substrates and might be termed chitobiosidases.  相似文献   

5.
Yeast Kex2 and human furin are subtilisin-related proprotein convertases that function in the late secretory pathway and exhibit similar though distinguishable patterns of substrate recognition. Although both enzymes prefer Arg at P(1) and basic residues at P(2), the two differ in recognition of P(4) and P(6) residues. To probe P(4) and P(6) recognition by Kex2p, furin-like substitutions were made in the putative S(4) and S(6) subsites of Kex2. T252D and Q283E mutations were introduced to increase the preference for Arg at P(4) and P(6), respectively. Glu(255) was replaced with Ile to limit recognition of P(4) Arg. The effects of putative S(4) and S(6) mutations were determined by examining the cleavage by purified mutant enzymes of a series of fluorogenic substrates with systematic changes in P(4) and/or P(6). Whereas wild Kex2 exhibited little preference type for Arg at P(6), the T252D mutant and T252D/Q283E double mutant exhibited clear interactions with P(6) Arg. Moreover, the T252D and T252D/Q283E substitutions altered the influence of the P(6) residue on P(4) recognition. We infer that cross-talk between S(4) and S(6), not seen in furin, allows wild type and mutant forms of Kex2 to adapt their subsites for altered modes of recognition. This apparent plasticity may allow the subsites to rearrange their local environment to interact with different substrates in a productive manner. E255I-Kex2 exhibited significantly decreased recognition of P(4) Arg in a tetrapeptide substrate with Lys at P(1), although the general pattern of selectivity for aliphatic residues at P(4) remained unchanged.  相似文献   

6.
Reassortment of DNA recognition domains and the evolution of new specificities   总被引:24,自引:2,他引:24  
Type I restriction enzymes comprise three subunits only one of which, the S polypeptide, dictates the specificity of the DNA sequence recognized. Recombination between two different hsdS genes, SP and SB, led to the isolation of a system, SQ, which had a different specificity from that of either parent. The finding that the nucleotide sequence recognized by SQ is a hybrid containing components from both the SP and SB target sequences suggested that DNA recognition is carried out by two separable domains within each specificity polypeptide. To test this we have made the recombinant gene of reciprocal structure and demonstrate that it encodes a polypeptide whose recognition sequence, deduced in vivo, is as predicted by this model. We also report the sequence of the SB specificity gene, so that information is now available for the five known members of this family of enzymes. All show a similar organization of conserved and variable regions. Comparisons of the predicted amino acid sequences reveal large non-conserved areas which may not even be structurally similar. This is remarkable since these different S subunits are functionally identical, except for the specificity with respect to the DNA sequence with which they interact. We discuss the correlation of the variation in polypeptide sequence with recognition specificities.  相似文献   

7.
Type I restriction enzymes comprise three subunits only one of which, the S polypeptide, dictates the specificity of the DNA sequence recognized. Recombination between two different hsdS genes, SP and SB, led to the isolation of a system, SQ, which had a different specificity from that of either parent. The finding that the nucleotide sequence recognized by SQ is a hybrid containing components from both the SP and SB target sequences suggested that DNA recognition is carried out by two separable domains within each specificity polypeptide. To test this we have made the recombinant gene of reciprocal structure and demonstrate that it encodes a polypeptide whose recognition sequence, deduced In vivo, is as predicted by this model. We also report the sequence of the SB specificity gene, so that information is now available for the five known members of this family of enzymes. Ali show a similar organization of conserved and variable regions. Comparisons of the predicted amino acid sequences reveal large non-conserved areas which may not even be structurally similar. This is remarkable since these different S subunits are functionally identical, except for the specificity with respect to the DNA sequence with which they interact. We discuss the correlation of the variation in polypeptide sequence with recognition specificities.  相似文献   

8.
Amino acid sequence specificities of an adhesive recognition signal   总被引:11,自引:0,他引:11  
Synthetic peptides derived from the cell-binding domain of fibronectin have previously been found to inhibit fibronectin-mediated adhesion in vitro competitively and reversibly, as well as inhibiting cell migratory events in vivo. The amino acid sequence specificity required for this inhibitory activity has been examined further using variations of the originally identified active peptide sequences. The most active small peptide was found to be the pentapeptide Gly-Arg-Gly-Asp-Ser. Although the tetrapeptide Arg-Gly-Asp-Ser was found to retain substantial activity, it was approximately threefold less active. An "inverted" peptide sequence with these same four amino acids arranged in the mirror symmetrical sequence Ser-Asp-Gly-Arg was found to be nearly as active as the forward sequence. However, the same inverted tetrapeptide sequence embedded in a synthetic decapeptide derived from a sequence of histocompatibility antigens has minimal activity, suggesting the importance of adjacent sequences in modifying the activity of such peptides. Neither substitution of amino acids of the same charge nor reversal of the positions of the two charged amino acids retains biological activity. Decreasing the spacing between the charged residues also causes a loss of activity. Our results suggest the hypothesis that this adhesive recognition signal consists of a specific arrangement of one acidic and one basic charged group and additional information provided by adjacent amino acids.  相似文献   

9.
Mammalian social systems rely on signals passed between individuals conveying information including sex, reproductive status, individual identity, ownership, competitive ability and health status. Many of these signals take the form of complex mixtures of molecules sensed by chemosensory systems and have important influences on a variety of behaviours that are vital for reproductive success, such as parent-offspring attachment, mate choice and territorial marking. This article aims to review the nature of these chemosensory cues and the neural pathways mediating their physiological and behavioural effects. Despite the complexities of mammalian societies, there are instances where single molecules can act as classical pheromones attracting interest and approach behaviour. Chemosignals with relatively high volatility can be used to signal at a distance and are sensed by the main olfactory system. Most mammals also possess a vomeronasal system, which is specialized to detect relatively non-volatile chemosensory cues following direct contact. Single attractant molecules are sensed by highly specific receptors using a labelled line pathway. These act alongside more complex mixtures of signals that are required to signal individual identity. There are multiple sources of such individuality chemosignals, based on the highly polymorphic genes of the major histocompatibility complex (MHC) or lipocalins such as the mouse major urinary proteins. The individual profile of volatile components that make up an individual odour signature can be sensed by the main olfactory system, as the pattern of activity across an array of broadly tuned receptor types. In addition, the vomeronasal system can respond highly selectively to non-volatile peptide ligands associated with the MHC, acting at the V2r class of vomeronasal receptor. The ability to recognize individuals or their genetic relatedness plays an important role in mammalian social behaviour. Thus robust systems for olfactory learning and recognition of chemosensory individuality have evolved, often associated with major life events, such as mating, parturition or neonatal development. These forms of learning share common features, such as increased noradrenaline evoked by somatosensory stimulation, which results in neural changes at the level of the olfactory bulb. In the main olfactory bulb, these changes are likely to refine the pattern of activity in response to the learned odour, enhancing its discrimination from those of similar odours. In the accessory olfactory bulb, memory formation is hypothesized to involve a selective inhibition, which disrupts the transmission of the learned chemosignal from the mating male. Information from the main olfactory and vomeronasal systems is integrated at the level of the corticomedial amygdala, which forms the most important pathway by which social odours mediate their behavioural and physiological effects. Recent evidence suggests that this region may also play an important role in the learning and recognition of social chemosignals.  相似文献   

10.
RNA-binding proteins (RBPs) bind to their target RNA molecules by recognizing specific RNA sequences and structural contexts. The development of CLIP-seq and related protocols has made it possible to exhaustively identify RNA fragments that bind to RBPs. However, no efficient bioinformatics method exists to reveal the structural specificities of RBP–RNA interactions using these data. We present CapR, an efficient algorithm that calculates the probability that each RNA base position is located within each secondary structural context. Using CapR, we demonstrate that several RBPs bind to their target RNA molecules under specific structural contexts. CapR is available at https://sites.google.com/site/fukunagatsu/software/capr.  相似文献   

11.
We describe the comprehensive characterization of homeodomain DNA-binding specificities from a metazoan genome. The analysis of all 84 independent homeodomains from D. melanogaster reveals the breadth of DNA sequences that can be specified by this recognition motif. The majority of these factors can be organized into 11 different specificity groups, where the preferred recognition sequence between these groups can differ at up to four of the six core recognition positions. Analysis of the recognition motifs within these groups led to a catalog of common specificity determinants that may cooperate or compete to define the binding site preference. With these recognition principles, a homeodomain can be reengineered to create factors where its specificity is altered at the majority of recognition positions. This resource also allows prediction of homeodomain specificities from other organisms, which is demonstrated by the prediction and analysis of human homeodomain specificities.  相似文献   

12.
Innate immunity relies critically upon the ability of a few pattern recognition molecules to sense molecular markers on pathogens, but little is known about these interactions at the atomic level. Human L- and H-ficolins are soluble oligomeric defence proteins with lectin-like activity, assembled from collagen fibers prolonged by fibrinogen-like recognition domains. The X-ray structures of their trimeric recognition domains, alone and in complex with various ligands, have been solved to resolutions up to 1.95 and 1.7 A, respectively. Both domains have three-lobed structures with clefts separating the distal parts of the protomers. Ca(2+) ions are found at sites homologous to those described for tachylectin 5A (TL5A), an invertebrate lectin. Outer binding sites (S1) homologous to the GlcNAc-binding pocket of TL5A are present in the ficolins but show different structures and specificities. In L-ficolin, three additional binding sites (S2-S4) surround the cleft. Together, they define an unpredicted continuous recognition surface able to sense various acetylated and neutral carbohydrate markers in the context of extended polysaccharides such as 1,3-beta-D-glucan, as found on microbial or apoptotic surfaces.  相似文献   

13.
14.
A comparison is made of the specific combining sites of a number of lectins and of antibodies with emphasis on those reacting with blood group A, B, and H determinants. The ranges of site sizes and specificities of both groups are similar both from immunochemical studies and from the limited x-ray diffraction data available.  相似文献   

15.
16.
O'Brien G  Quinsey NS  Whisstock JC  Pike RN 《Biochemistry》2003,42(50):14939-14945
The classical complement pathway, which plays a vital role in preventing infection, is initiated by the action of the serine proteases C1r and C1s. We have examined the hydrolysis of substrates representing cleavage sequences in the physiological substrates for C1s, C2 and C4. These studies showed that the P(1)'-P(4)' substrate residues of C2 and C4 conferred greater affinity of substrate for enzyme and also induced a sigmoidal dependence of enzyme velocity on substrate concentration. This indicates that the substrate gave rise to homotropic positive cooperative behavior in the enzyme. When C1s was in complex with C1q and C1r, as would occur under physiological conditions, the same behavior was observed, indicating that this mechanism is relevant in the complement pathway in vivo. We further investigated the requirements of C1s for prime side amino acids by examining a substrate library in which each of the P(1)'-P(4)' positions had been substituted by different classes of amino acids. This revealed that the P(1)' position was a major determinant of the selectivity of the enzyme, while certain substitutions at the P(1)'-P(4)' positions abolished the allosteric behavior, indicating that contact residues at these positions in the C1s enzyme must mediate the cooperativity. The studies reported here highlight the importance of prime subsites in C1s for interaction with its cognate substrates in the complement pathway and therefore yield greater understanding of the mechanism of interaction between this vital protease and its physiological substrates.  相似文献   

17.
There is some evidence that macrurans recognize each other as individuals. In freshwater crayfish there are conflicting reports and there is limited information about the sensory mechanisms involved. To determine the extent to which the crayfish Cherax destructor is capable of individual recognition, we performed experiments that familiarized animals with each other and then manipulated their recent success in dominance contests. Crayfish were more likely to win an encounter when paired against a familiar opponent than an unfamiliar one after the manipulation stage. In other experiments, animals were attracted to familiar conspecifics when only visual or chemical cues were present. This demonstrates that C. destructor is able to discriminate between a familiar and an unfamiliar opponent. The results highlight the complex nature of intraspecific communication in crayfish and suggest elements likely to be of importance in the social interactions of groups in the wild state.  相似文献   

18.
An in vitro method of altering the apparent cleavage specificities of restriction endonucleases was developed using DNA modification methylases. This method was used to reduce the number of cleavage sites for 34 restriction endonucleases. In particular, single-site cleavages were achieved for Nhe I in Adeno-2 DNA and for Acc I and Hinc II in pBR322 DNA by specifically methylating all but one recognition sequence.  相似文献   

19.
Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1-SBD, of AMY1 and the starch binding domain (SBD) of Aspergillus niger glucoamylase were also analyzed. DMA of the subsite -6 mutant Y105A and AMY1-SBD increased to 3.3 and 3.0, respectively. M53E, M298S, and T212W at subsites -2, +1/+2, and +4, respectively, and the double mutant Y105A/T212W had decreased DMA of 1.0-1.4. C95A (subsite -5) had a DMA similar to that of wild type. Maltoheptaose (G7) was always the major initial oligosaccharide product. Wild-type and the subsite mutants released G6 at 27-40%, G8 at 60-70%, G9 at 39-48%, and G10 at 33-44% of the G7 rate, whereas AMY1-SBD more efficiently produced G8, G9, and G10 at rates similar to, 66%, and 60% of G7, respectively. In contrast, the shorter products appeared with large individual differences: G1, 0-15%; G2, 8-43%; G3, 0-22%; and G4, 0-11% of the G7 rate. G5 was always a minor product. Multiple attack thus involves both longer translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products can be manipulated by structural changes in the active site or by introduction of extra substrate binding sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号