首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hearing loss is a significant public health problem, and the “loss of sensory hair cells” is one of two leading causes in humans. Advanced imaging reagents are desirable for understanding the role of the surrounding support cells in the loss or regeneration of the hair cells. A styryl dye was found to exhibit NIR emission (λem ≈ 684 nm) with a very large Stokes shift (Δν ≈ 9190 cm−1), due to the incorporation of excited state intramolecular proton transfer (ESIPT) mechanism. When used to stain live zebrafish embryos, the probe was found to exhibit good selectivity in targeting neuromasts, which are sensory organs on the surface of the fish’s body. The finding was verified by direct comparison with the known neuromast-labeling reagent, 4-Di-2-ASP. In contrast to the existing styryl dyes that label neuromast hair cells, the new probe labeled both neuromast hair cells and the surrounding support cells, while giving discernable signals. The study thus illustrated a useful tool to aid the developmental study of two closely related cell types on the mechanosensory sensory organ of zebrafish, which is a powerful animal model for hearing loss research.  相似文献   

2.
Treatment of washed, intact platelets with Bolton-Hunter reagent is a satisfactory method for 125I-labeling of many platelet proteins. Analysis by two dimensional polyacrylamide gel electrophoresis and autoradiography shows that the major platelet cytoskeletal proteins and at least four surface-exposed proteins are labeled. The method allows the identification of these labeled proteins in amounts that are below the limits of detection by Coomassie blue staining. Two granule proteins, thrombospondin and fibrinogen, are slightly labeled. Conditions of labeling do not appear to affect platelet structure or function, as assessed by phase-contrast microscopy, 51CrO42? release, and aggregation in response to thrombin or fibrinogen/adenosine-5′-diphosphate.  相似文献   

3.
Characterization of 5 to 25 pmol of purified proteins by tryptic peptide mapping has been accomplished using the Bolton-Hunter reagent (125I-3-[4-hydroxyphenyl]propionic acid N-hydroxysuccinimide ester). Radioacylation is followed by reaction with unlabeled ester and reductive methylation to ensure resistance of lysyl residues to trypsinization. Reduced and alkylated proteins are analzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, trypsinized from individual gel slices, and mapped two-dimensionally on thin layers. The method permits peptide mapping of proteins with specific activities of 1 to 2 × 104 cpm/ng, results in more spots (and often more structural information) than direct iodination procedures, and can be used for characterization of proteins that could not be biosynthetically labeled.  相似文献   

4.
The orientation of amino groups in the membrane in the α- and β-subunits of (Na+ + K+)-ATPase was examined by labeling with Boldon-Hunter reagent, N-succinimidyl 3-(4-hydroxy,5-[125I]iodophenyl)propionate), in right-side-out vesicles or in open membrane fragments from the thick ascending limbs of the Henles loop of pig kidney. Sealed right-side-out vesicles of basolateral membranes were separated from open membrane fragments by centrifugation in a linear metrizamide density gradient. After labeling, (Na+ + K+)-ATPase was purified using a micro-scale version of the ATP-SDS procedure. Distribution of label was analyzed after SDS-gel electrophoresis of α-subunit, β-subunit and proteolytic fragments of α-subunit. Both the α- and the β-subunit of (Na+ + K+)-ATPase are uniformly labeled, but the distribution of labeled residues on the two membrane surfaces differs markedly. All the labeled residues in the β-subunit are located on the extracellular surface. In the α-subunit, 65–80% of modified groups are localized to the cytoplasmic surface and 20–35% to the extracellular membrane surface. Proteolytic cleavage provides evidence for the random distribution of 125I-labeling within the α-subunit. The preservation of (Na+ + K+)-ATPase activity and the observation of distinct proteolytic cleavage patterns of the E1- and E2-forms of the α-subunit show that the native enzyme structure is unaffected by labeling with Bolton-Hunter reagent. Bolton-Hunter reagent was shown not to permeate into sheep erythrocytes under the conditions of the labeling experiment. The data therefore allow the conclusion that the mass distribution is asymmetric, with all the labeled amino groups in the β-subunit being on the extracellular surface, while the α-subunit exposes 2.6-fold more amino groups on the cytoplasmic than on the extracellular surface.  相似文献   

5.
A detection method for 1-ng quantity of protein is described. This method is based on reaction of polypeptides with 125I-labeled N-succinimidyl-3-(4-hydroxyphenyl)propionate (Bolton-Hunter reagent) and separation of individual polypeptides by electrophoresis in polyacrylamide gels containing dodecyl sulfate. Banding profiles, as determined by densitometric scanning of autoradiograms, are comparable to those determined by Coomassie blue staining, however, 1000 times less material is needed. After 125I-labeled Bolton-Hunter reaction, samples can be electrophoresed directly without removal of excess 125I-labeled reagent. Prior to autoradiography, excess 125I-labeled Bolton-Hunter reagent is removed by staining and destaining the gel. This allows a facile visualization of nanogram levels of proteins without the use of carrier molecules or loss of material due to various manipulations to remove excess iodination reagent.  相似文献   

6.
Summary The histogenesis of the dorsal root ganglia of chick embryos (ages 3 to 9 days) was followed in three different tissue culture systems. Organotypic explants included dorsal root ganglia connected to the lumbosacral segment of the spinal cord or isolated explants of the contralateral ganglia. Additionally, dissociated monolayer cultures of ganglia tissue were established. The gradual differentiation of progenitor neuroblasts into distinct populations of large ventrolateral and small dorsomedial neurons was observed in vivo and in vitro. Neurites developed after 3 days in the presence or absence of nerve growth factor in the medium. In contrast, autoradiographic analysis indicates that [3H]thymidine incorporation in neuronal cultures differed significantly from intact embryos. In vivo, the number of neuronal progenitor cells labeled with [3H]thymidine decreased in older embryos; in vitro, uptake of [3H]thymidine label was not observed in ganglionic progenitor cells regardless of the age of the donor embryo or the type of culture system. Lack of proliferation in ganglionic progenitor cells was not due to degeneration because vital staining and uptake of [3H]deoxyglucose indicated that neurons were metabolically active. Furthermore, the block in mitotic activity in vitro was limited to presumptive ganglionic neuronal cells. In the ependyma of the spinal cord segment connected to the dorsal root ganglia, neuronal progenitor cells were heavily labeled as were non-neuronal cells within both spinal cord and ganglia. Our results suggest that in vitro conditions can promote the differentiation of sensory neurons from early embryos (E3.5–4.5) without proliferation of progenitor cells.  相似文献   

7.
The iodinating reagent 1,3,4,6,-tetrachloro-3α,6α-diphenylglycoluril (IODOGEN3) was used to label antigens on zygotes of Plasmodium gallinaceum with parallel studies using lactoperoxidase-catalyzed radioiodination for comparison. Proteins labeled by the IODOGEN method are most probably on the surface of the zygote, as the pattern of labeled proteins analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was very similar to the pattern of lactoperoxidase-labeled proteins. Furthermore, the labeled proteins represented only a subset of the total Coomassie Blue-stained proteins. The radioiodinated zygote proteins were immuno-reactive after IODOGEN or lactoperoxidase labeling. The IODOGEN method is technically much more simple than the lactoperoxidase method and does not require the addition of extraneous proteins or H2O2. The advantages of IODOGEN labeling, together with the essential equivalence of results obtained by these two, methods, make the IODOGEN method attractive for labeling parasite antigens in general.  相似文献   

8.
Lactoperoxidase catalysed iodination of tyrosyl residues was used to label the exposed plasma membrane proteins in intact Ehrlich ascites tumor cells. Autoradiography of 125I-labeled intact cells revealed that the label was predominantly associated with the plasma membrane. When whole cells were solubilized and subjected to gel electrophoresis, two major labeled peptide classes of 100 000 and 80 000 D along with 4 minor labeled classes were found. An identical labeling pattern was obtained when plasma membranes isolated from labeled cells were solubilized and subjected to gel electrophoresis. These results demonstrate that the number of exposed plasma membrane peptides and their molecular weights can be determined without first isolating the membrane by subcellular fractionation procedures, a standard approach in most studies.  相似文献   

9.
Embryonic chick spinal cord neurons grown in dissociated cell culture have a high affinity uptake mechanism for choline. We find that, in addition to acetylcholine synthesis, the accumulated choline is used for the synthesis of metabolites such as lipids that are retained in part by conventional fixation techniques. As a result autoradiographic methods can be used to identify the cells that have the uptake mechanism in spinal cord cultures. About 60% of the neurons are labeled by [3H]choline uptake in cultures prepared with spinal cord cells from 4-day-old embryos, and about 40% are labeled in cultures prepared with cord cells from 7-day-old embryos. Neurons that innervate skeletal myotubes in spinal cord-myotube cultures are consistently labeled by [3H]choline uptake. Neurons unlabeled by the procedure are viable: they exclude the dye trypan blue and accumulate 14C-amino acids for protein synthesis. Most of the neurons unlabeled by [3H]choline uptake can instead be labeled by uptake of γ-[3H]aminobutyric acid, and vice versa. These results suggest that high affinity choline uptake can be used to label cholinergic neurons in cell culture, and that at least some populations of noncholinergic neurons are not labeled by the procedure. It cannot yet be concluded, however, that all labeled neurons are cholinergic since more labeled neurons are obtained per cord than would be expected from the number of neurons making up identified cholinergic populations in vivo. A three- to fourfold increase in the amount of high affinity choline uptake is observed between Days 3 and 15 in culture for spinal cord cells obtained from 4-day-old embryos. The number of [3H]choline-labeled neurons in such cultures decreases slightly during the same period, suggesting that the increase in uptake reflects neuronal growth or development rather than an increase in population size. Both the magnitude of the uptake and the number of [3H]choline-labeled neurons are the same for spinal cord cells grown with and without skeletal myotubes.  相似文献   

10.
Pyridoxal [32P] phosphate was prepared using [γ-32P]ATP, pyridoxal, and pyridoxine kinase purified from Escherichia coli B. The pyridoxal [32P] phosphate obtained had a specific activity of at least 1 Ci/mmol. This reagent was used to label intact influenza virus, red blood cells, and both normal and transformed chick embryo fibroblasts. The cell or virus to be labeled was incubated with pyridoxal [32P] phosphate. The Schiff base formed between pyridoxal [32P] phosphate and protein amino groups was reduced with NaBH4. The distribution of pyridoxal [32P] phosphate in cell membrane or virus envelope proteins was visualized by autoradiography of the proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis.The labeling of the proteins of both influenza and chick cells appeared to be limited exclusively to those on the external surface of the virus or plasma membrane. With intact red blood cells the major portion of the probe was bound by external proteins, but a small amount of label was found associated with the internal proteins spectrin and hemoglobin.  相似文献   

11.
Nicotinic acetylcholine receptors (nAChRs) are involved in the regulation of intracellular Ca2+-dependent processes both in normal and pathological states. α-Conotoxins from the venom of Conus marine mollusks are a valuable tool for the investigation of the pharmacological action and functional role of nAChRs. Analogues of α-conotoxin MII labeled by Bolton-Hunter reagent (BH-MII) or fluorescein isothiocyanate (FITC-MII) on the N-terminal glycine residue have been synthesized in the present work. Fluorescence microscopy studies of SH-SY5Y neuroblastoma cells loaded with Ca2+ indicator Fura-2, or by both Ca2+ indicator Fluo-4 and Na+ indicator SBFI, were used to test the effect of MII modification on its ability to block Ca2+ and Na+ signals induced by nicotine. Measurements in SH-SY5Y cells showed that kinetics of the increase and recovery of the concentration of free Ca2+ ([Ca2+] i ) upon nicotine application and washout was different from that for free Na+ ([Na+] i ), this being evidence of differences in the mechanism of Ca2+ and Na+ homeostasis regulation. MII suppressed the nicotine-induced increase of [Ca2+] i and [Na+] i in a concentration-dependent manner. An additional tyrosine residue added to the N-terminus of one of the MII derivatives caused a significant decrease in the inhibitory action of MII; this decrease was even more pronounced when a large FITC label was introduced into MII. The BH-MII derivative had an inhibitory effect similar to that of unmodified α-conotoxin. MII and its iodinated derivatives are promising tools for radioligand assays.  相似文献   

12.
A partial amino acid sequence of cowpea mosaic virus (CPMV) VPg radiochemically modified by chloramine-T and Bolton-Hunter reagent has been determined. VPg covalently bound to viral RNA chains (VPg-RNA) was iodinated with chloramine-T and Bolton-Hunter reagent to label tyrosine and lysine residues, respectively. [125I]VPg-RNA was digested with nuclease P1 and the resulting [125I]VPg-pU was purified by SDS-polyacrylamide gel electrophoresis and subjected to automated Edman degradation. Control experiments with chemically synthesized poliovirus VPg showed the feasibility of radiochemical microsequence analysis of protein that had been radiochemically modified by chloramine-T and Bolton-Hunter reagent. Analysis of CPMV [125I]VPg-pU revealed the presence of tyrosine residues at position 12 and 14, and of lysine residues at position 3 and 20, respectively. In combination with Edman degradation of unlabeled CPMV VPg, which showed serine and arginine residues to be present at position 1 and 2, respectively, the data obtained allow the precise positioning of VPg within the 200 000 dalton (200 K) polyprotein encoded by CPMV B RNA and the prediction of its entire amino acid sequence. VPg is located at the COOH terminus of its 60 K, membrane-bound,precursor and proximal to the amino terminus of the protease-polymerase domain of the polyprotein. A processing scheme for the 200 K polyprotein is discussed in which Gln-Ser amino acid pairs act as the major signal for proteolytic cleavage.  相似文献   

13.
Proteins synthesized during the preimplantation period of mouse embryogenesis were labeled with radioactive tyrosine and lysine and fractionated by electrophoresis on polyacrylamide disc gels containing sodium dodecyl sulfate. For interstage comparisons and comparisons of the incorporation of different amino acids at the same developmental stages, the embryos were incubated with either 3H- or 14C-labeled amino acids. The embryos were then combined, and the proteins were isolated and electrophoresed simultaneously. The data were analyzed with a dual isotope computer program and expressed in the form of 14C/3H ratios.Approximately 20–25 labeled protein components of apparent molecular weights between 25,000 and 115,000 can be defined, and 5 are most significant quantitatively. Of the latter, there are developmental increases in the rates of synthesis of 3 (with apparent molecular weights of 35,000 to 37,000, 37,000 to 41,000, and 66,000 to 70,000), a decrease in the rate of synthesis of another (53,000 to 57,000), and little change in the last (46,000 to 49,000). Developmental changes in the rates of synthesis of several other components are also demonstrated by the 14C/3H incorporation ratios. The relative amounts of the different proteins synthesized by day 3 (early blastocyst) embryos over an 8-hr period remain constant, as does the relative labeling by lysine and tyrosine at each developmental stage examined. Similarly, there is no change in the pattern of the radioactive proteins when day 2 (8–16 cell) embryos are labeled for 2 hr and then incubated for an additional 24 hr. The greatest change in the overall pattern of protein synthesis occurs quite early, between day 1 (2 cell) and day 2, and lesser changes occur at later stages. These findings are in contrast to the major change in the rate of protein synthesis which occurs after day 2.  相似文献   

14.
In previous studies we have demonstrated that antibodies radioiodinated with N-succinimidyl 3-iodobenzoate (SIB) are less susceptible to loss of radioiodine in vivo than antibodies iodinated directly by electrophilic substitution on their tyrosine residues with Iodogen. Since the Bolton-Hunter reagent, N-succinimidyl 3-(4-hydroxy-3-iodophenyl)propionate, is identical with SIB except that it contains a hydroxyl group on the aromatic ring and a two-methylene spacer, a comparison of their coupling chemistry and in vivo behavior was performed to better understand the structural requirements for a useful iodinated acylation agent. Protein concentration and pH had a significant effect on the coupling efficiency of both SIB and the Bolton-Hunter reagent; however, protein-labeling yields with SIB were generally higher by a factor of 2. Paired-label biodistribution studies in mice demonstrated that thyroid uptake (a monitor of dehalogenation) of antibody labeled by the Bolton-Hunter method was twice that of antibody labeled with SIB but only 7% of that observed for antibody labeled with Iodogen. These results suggest that even minor differences in iodination site can profoundly alter the retention of label on a protein in vivo.  相似文献   

15.
A system for radioactive labeling of compounds of biological interest that, due to their low electronic density, cannot be labeled by the standard iodination techniques is described. Using p-nitroanisole as a model, we have prepared 2-[125I]iodo-4-nitroanisole by treatment with thallium trifluoroacetate, with later displacement of the thallium by iodide according to A. McKillop et al. (J. Amer. Chem. Soc.93, 4841–4844 (1970)). The labeled iodonitroanisole has been used as a photoactive reagent to label a protein (bovine serum albumin), showing that under the irradiation conditions used, the label is incorporated into the polypeptide mainly through modification of ?-amino groups of the lysine residues.  相似文献   

16.
Whereas bacterial expression systems are widely used for production of uniformly or selectively 15N-labeled proteins the usage of the baculovirus expression system for labeling is limited to very few examples in the literature. Here we present the complete formulations of the two insect media, IML406 and 455, for the high-yield production of selectively 15N-labeled proteins in insect cells. The quantities of 15N-amino acids utilized in the production of labeled GST were similar in the case of bacterial and viral expression. For the most studied amino acids essential for insect cells the 15N-HSQC spectra, recorded with GST labeled in insect cells, showed no cross labeling and provided therefore spectra of better quality compared to NMR spectra of GST expressed in E. coli. Also in the case of amino acids not essential for Sf9 cells we were able to label a defined number of amino acid species. Therefore the selective labeling using the baculovirus expression vector system represents a complement or even an alternative to the bacterial expression system. Based on these findings we can provide a first simple overview of the network of the amino acid metabolism in E. coli and insect cells focused on nitrogen. For some amino acids the expression of labeled proteins in insect cells can replace the cell-free protein expression.  相似文献   

17.
The surface proteins and glycoproteins on red cells from normal and Babesia bovis-infected calf blood have been compared. Several radiolabeling probes were used to label specifically external membrane molecules which were then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by autoradiography or fluorography. No differences were observed among the Coomassie Blue-stained membrane proteins of erythrocytes from individual uninfected calves. Comparison of red cells from these animals also indicated no qualitative differences in the surface proteins with accessible tyrosyl residues labeled by lactoperoxidase-catalyzed radioiodnation, although some quantitative variation in the uptake of radioactivity into particular proteins was observed. the major radioiodinated bands on normal bovine erythrocytes had Mr of 165, 130, 90, and 45 kiloDaltons. However, labeling of surface glycoproteins by the periodate/[3H]NaBH4 and galactose oxidase (± neuraminidase)/[3H]NaBH4 methods showed significant differences in the surface proteins of red cells from individual uninfected calves. of 14 animals tested, 5 had major labeled glycoproteins of unique Mr. No changes were observed in radioiodinated surface proteins of total red cell samples from infected calves with 0.5-6% parasitemia. Radioiodination of concentrated infected red cells from the same samples (concentrated by selective hypotonic lysis of uninfected erythrocytes in KC1) resulted in the labeling of 3 new surface proteins, with Mr of 118, 115, and 60 kiloDaltons. the same new 125I-labeled bands were identified on infected cells from 3 avirulent strains of B. bovis used in vaccine production. Furthermore, in concentrated infected cells there was very poor radiolabeling of major bands strongly labeled on uninfected cells (Mr 165, 130, and 90 kiloDaltons), suggesting parasite-induced loss of these proteins. Although there were some differences in 3H-labeled surface glycoproteins of red cells from normal and. B. bovis -infected blood, they were restricted to minor labeled bands and were not seen consistently. the labeled surface glycoproteins of concentrated infected cells were very similar to those of the uninfected red blood cells from infected blood.  相似文献   

18.
The ability to differentially label single cells has important implications in developmental biology. For instance, determining how hematopoietic, lymphatic, and blood vessel lineages arise in developing embryos requires fate mapping and lineage tracing of undifferentiated precursor cells. Recently, photoactivatable proteins which include: Eos1, 2, PAmCherry3, Kaede4-7, pKindling8, and KikGR9, 10 have received wide interest as cell tracing probes. The fluorescence spectrum of these photosensitive proteins can be easily converted with UV excitation, allowing a population of cells to be distinguished from adjacent ones. However, the photoefficiency of the activated protein may limit long-term cell tracking11. As an alternative to photoactivatable proteins, caged fluorescein-dextran has been widely used in embryo model systems7, 12-14. Traditionally, to uncage fluorescein-dextran, UV excitation from a fluorescence lamp house or a single photon UV laser has been used; however, such sources limit the spatial resolution of photoactivation. Here we report a protocol to fate map, lineage trace, and detect single labeled cells. Single cells in embryos injected with caged fluorescein-dextran are photoactivated with near-infrared laser pulses produced from a titanium sapphire femtosecond laser. This laser is customary in all two-photon confocal microscopes such as the LSM 510 META NLO microscope used in this paper. Since biological tissue is transparent to near-infrared irradiation15, the laser pulses can be focused deep within the embryo without uncaging cells above or below the selected focal plane. Therefore, non-linear two-photon absorption is induced only at the geometric focus to uncage fluorescein-dextran in a single cell. To detect the cell containing uncaged fluorescein-dextran, we describe a simple immunohistochemistry protocol16 to rapidly visualize the activated cell. The activation and detection protocol presented in this paper is versatile and can be applied to any model system. Note: The reagents used in this protocol can be found in the table appended at the end of the article.  相似文献   

19.
Using the benzothiazolium-4-quinolium dye, TO-PRO-1, to detect cell death in live embryos, we labeled a developmental series of Wnt-1 null mutant and wild type embryos to determine if cell death contributed to the absence of the midbrain and rostral metencephalon observed in Wnt-1 mutant embryos. We found that there is no detectable cell death at early somite stages in Wnt-1 mutant embryos. However, we detected a significant, but transient, population of dying cells within the anterior dorsal metencephalon in 20–29 somite stage embryos. These cells located in the anterior dorsal metencephalon also stain positive using the TUNEL technique that utilizes terminal transferase to label DNA fragments that are typical in the nuclei of apoptotic cells. Thus, programmed cell death plays a role in the loss of the metencephalon, but apparently does not contribute to the earliest aspect of the mutant phenotype, namely the loss of the midbrain. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Summary Two nuclear markers were used to investigate the origin of cells in secondary embryos ofXenopus induced by dorsal lip transplants, and to determine the ability of the chordomesoderm to direct cells to change their fates.3H-thymidine was used to label cells transplanted between individualX. laevis embryos, and nuclear quinacrine fluorescence was used to distinguishX. borealis tissues transplanted toX. laevis hosts. In the first set of experiments, dorsal lip tissue (also known as the dorsal marginal zone; DMZ) was transplanted to the ventral marginal zone (VMZ) of host embryos. The marginal zone is the toroid of presumptive mesodermal cells which involutes during gastrulation. Examination of the secondary embryos resulting from these grafts revealed that their notochords were derived almost exclusively from transplanted cells whereas their nervous systems and somites were composed almost entirely of host cells. Next, the nuclear markers were used to show the normal fates of the tissue of the ventral equatorial region immediately above the VMZ by orthotopic grafting. This tissue was found to give rise to structures in the ventral posterior portions of the tailbud embryo. Finally, the same ventral tissue was labeled and transplanted to the dorsal equatorial region above the DMZ. As a result, it was induced to change its fate and become neural. These results lend unequivocal support to Spemann's theory of neural induction which has recently been questioned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号