首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Transduction of plant signal molecules by the Rhizobium NodD proteins.   总被引:7,自引:0,他引:7  
The regulatory NodD proteins of Rhizobium bacteria mediate the activation of a gene set responsible for symbiotic nodule formation by plant signal molecules. Here we discuss the signal recognition and gene activation properties of NodD and present a model summarizing the current knowledge on NodD action.  相似文献   

3.
4.
Summary The signal specificity and structure of sensor-activator proteins from different species (NodD of Rhizobium bacteria and vertebrate nuclear receptors) were compared. Several compounds (including flavonoids, coumestrol and estradiol) that bind to mammalian receptors also interact with NodD proteins. NodD-dependent synergism of the signal compounds luteolin and catechin was observed suggesting that these compounds bind directly to NodD. Two regions comprising 63 and 37 amino acids in NodD showed 45% and 36% homology, respectively, with the estrogen receptor. These regions, designated as modules M1 and M2, coincide with conserved parts of the ligand-binding domains of the nuclear receptors. A part of NodD overlapping with the M1 module was predicted to be membrane associated and was 46% homologous to a membrane-spanning sensory segment of the Agrobacterium VirA protein. We suggest that the homologous polypeptide modules detected in NodD and the nuclear receptors originate from a common ancestor protein and may be directly involved in ligand binding.  相似文献   

5.
Regulation of Syrm and Nodd3 in Rhizobium Meliloti   总被引:4,自引:0,他引:4       下载免费PDF全文
J. A. Swanson  J. T. Mulligan    S. R. Long 《Genetics》1993,134(2):435-444
The early steps of symbiotic nodule formation by Rhizobium on plants require coordinate expression of several nod gene operons, which is accomplished by the activating protein NodD. Three different NodD proteins are encoded by Sym plasmid genes in Rhizobium meliloti, the alfalfa symbiont. NodD1 and NodD2 activate nod operons when Rhizobium is exposed to host plant inducers. The third, NodD3, is an inducer-independent activator of nod operons. We previously observed that nodD3 carried on a multicopy plasmid required another closely linked gene, syrM, for constitutive nod operon expression. Here, we show that syrM activates expression of the nodD3 gene, and that nodD3 activates expression of syrM. The two genes constitute a self-amplifying positive regulatory circuit in both cultured Rhizobium and cells within the symbiotic nodule. We find little effect of plant inducers on the circuit or on expression of nodD3 carried on pSyma. This regulatory circuit may be important for regulation of nod genes within the developing nodule.  相似文献   

6.
7.
8.
A gene library of the symbiotic 240-kb plasmid of Rhizobium leguminosarum strain 1001 was constructed in pUC18. The clones showing homology with a 6.6-kb fragment containing nodEFDABC from the Sym plasmid pRLlJI were detected by colony hybridization. Additional probes from the symbiotic region of pRLlJI were used to localize the corresponding genes on the map of pRle1001a. The relative positions of nod and nif gene clusters are different than those of pRLlJI. A comparison of the amino acid sequence for NodD from pRle1001a with NodD proteins from other Rhizobium species showed a high degree of sequence conservation at the amino terminus of the protein.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Bacterial surface components, especially exopolysaccharides, in combination with bacterial Quorum Sensing signals are crucial for the formation of biofilms in most species studied so far. Biofilm formation allows soil bacteria to colonize their surrounding habitat and survive common environmental stresses such as desiccation and nutrient limitation. This mode of life is often essential for survival in bacteria of the genera Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Rhizobium. The role of biofilm formation in symbiosis has been investigated in detail for Sinorhizobium meliloti and Bradyrhizobium japonicum. However, for S. fredii this process has not been studied. In this work we have demonstrated that biofilm formation is crucial for an optimal root colonization and symbiosis between S. fredii SMH12 and Glycine max cv Osumi. In this bacterium, nod-gene inducing flavonoids and the NodD1 protein are required for the transition of the biofilm structure from monolayer to microcolony. Quorum Sensing systems are also required for the full development of both types of biofilms. In fact, both the nodD1 mutant and the lactonase strain (the lactonase enzyme prevents AHL accumulation) are defective in soybean root colonization. The impairment of the lactonase strain in its colonization ability leads to a decrease in the symbiotic parameters. Interestingly, NodD1 together with flavonoids activates certain quorum sensing systems implicit in the development of the symbiotic biofilm. Thus, S. fredii SMH12 by means of a unique key molecule, the flavonoid, efficiently forms biofilm, colonizes the legume roots and activates the synthesis of Nod factors, required for successfully symbiosis.  相似文献   

17.
Several genera of N2-fixing bacteria establish symbiotic associations with plants. Among these, the genus Rhizobium has the most significant contribution, in terms of yield, in many important crop plants. The establishment of the Rhizobium-legume symbiosis is a very complex process involving many genes which need to be co-ordinately regulated. In the first instance, plant signal molecules, known to be flavonoids, trigger the expression of host-specific genes in the bacterial partner through the action of the regulatory NodD protein. In response to these signals, Rhizobium bacteria synthesize lipo-oligosaccharide molecules which in turn cause cell differentiation and nodule development. Once the nodule has formed, Rhizobium cells differentiate into bacteroids and another set of genes is activated. These genes, designated nif and fix, are responsible for N2 fixation. In this system, several regulatory proteins are involved in a complex manner, the most important being NifA and a two component (FixK and FixL) regulatory system. Our knowledge about the establishment of these symbioses has advanced recently, although there are many questions yet to be solved.  相似文献   

18.
Plant and Soil - The aim of this study was to investigate whether the overexpression of NifA and NodD regulators contribute to the symbiotic improvement of chickpea mesorhizobia. The native strains...  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号