首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rheumatoid arthritis is an autoimmune disease in which susceptibility is strongly associated with the expression of specific HLA-DR haplotypes, including DR1 (DRB1*0101) and DR4 (DRB1*0401). As transgenes, both of these class II molecules mediate susceptibility to an autoimmune arthritis induced by immunization with human type II collagen (hCII). The dominant T cell response of both the DR1 and DR4 transgenic mice to hCII is focused on the same determinant core, CII(263-270). Peptide binding studies revealed that the affinity of DR1 and DR4 for CII(263-270) was at least 10 times less than that of the model Ag HA(307-319), and that the affinity of DR4 for the CII peptide is 3-fold less than that of DR1. As predicted based on the crystal structures, the majority of the CII-peptide binding affinity for DR1 and DR4 is controlled by the Phe(263); however, unexpectedly the adjacent Lys(264) also contributed significantly to the binding affinity of the peptide. Only these two CII amino acids were found to provide binding anchors. Amino acid substitutions at the remaining positions had either no effect or significantly increased the affinity of the hCII peptide. Affinity-enhancing substitutions frequently involved replacement of a negative charge, or Gly or Pro, hallmark amino acids of CII structure. These data indicate that DR1 and DR4 bind this CII peptide in a nearly identical manner and that the primary structure of CII may dictate a different binding motif for DR1 and DR4 than has been described for other peptides that bind to these alleles.  相似文献   

3.
We present a homology based model of the ligand binding domain (LBD) of the homopentameric alpha1 glycine receptor (GlyR). The model is based on multiple sequence alignment with other members of the nicotinicoid ligand gated ion channel superfamily and two homologous acetylcholine binding proteins (AChBP) from the freshwater (Lymnaea stagnalis) and saltwater (Aplysia californica) snails with known high resolution structure. Using two template proteins with known structure to model three dimensional structure of a target protein is especially advantageous for sequences with low homology as in the case presented in this paper. The final model was cross-validated by critical evaluation of experimental and published mutagenesis, functional and other biochemical studies. In addition, a complex structure with strychnine antagonist in the putative binding site is proposed based on docking simulation using Autodock program. Molecular dynamics (MD) simulations with simulated annealing protocol are reported on the proposed LBD of GlyR, which is stable in 5 ns simulation in water, as well as for a deformed LBD structure modeled on the corresponding domain determined in low-resolution cryomicroscopy structure of the alpha subunit of the full-length acetylcholine receptor (AChR). Our simulations demonstrate that the beta-sandwich central core of the protein monomer is fairly rigid in the simulations and resistant to deformations in water.  相似文献   

4.
A peptide mimotope of the CD52 antigen with the sequence T1SSPSAD7 has been co-crystallised with the CAMPATH-1H antibody. Molecular dynamics (MD) simulations in explicit water of the T1SSPSAD7 peptide in both antibody free and bound states showed that the peptide's β-turn remained stable in the bound state but it was eliminated in the free state. Based on the observation that Thr1 and Ala6 residues made close contacts through their side chain, a new peptide mimotope is proposed: (S,S)-C1SSPSCD7. Thr1 and Ala6 residues have been mutated in Cys residues and a disulphide bond has been imposed. The new analogue has been simulated in both antibody bound and free states with MD in explicit water. It was found that the peptide remained in the stable β-turn conformation, both in complexed and free states. The difference in configurational entropy was estimated to be 0.15 kJ/K/mol. However, despite the structural similarity, the cyclic analogue lost more than 25% of its buried surface area contact with the antibody and a couple of critical hydrogen bond interactions were broken. It is concluded that design of cyclic analogues that mimic the bound conformation of peptides should be carefully performed and conformational ‘freezing’ does not necessarily guarantee better binding.  相似文献   

5.
6.
7.
The three-dimensional structure of full-length structure of the M1 muscarinic receptor was obtained through the fragmental homology modeling procedure. A 10-ns molecular dynamics (MD) simulation of the protein imbedded in a lipid slab and surrounded by water molecules was further used to relax the model. It was found that the homology model corresponded to the conformation in the ground state, since no significant motions of the backbone of transmembrane domains were observed. Furthermore, the reliability of the model was validated by analyzing key inter-helical contacts, sidechain-sidechain interactions, the formation of stable aromatic microdomains (clusters) and the docking of acetylcholine to its binding site. Moreover, a few conserved interactions observed in the X-ray structure of rhodopsin, such as inter-helical sidechain-sidechain hydrogen bonds were accurately reproduced in the MD simulation. The coupling of ACh to its binding site was found to be dominated by π-cation and salt bridge interactions, while its conformational space was restrained through van der Waals and hydrogen bond interactions. In general, such features were in very good agreement with the available experimental as well as with theoretical data. Considering the above, the structural information obtained in this study can be used a starting point to investigate the activation mechanism of the receptor and the ability to develop selective agonists and allosteric modulators which could be used for the treatment of Alzheimer’s disease.  相似文献   

8.
Heptapeptide ATWLPPR (A7R), identified in our laboratory by screening a mutated phage library, was shown to bind specifically to neuropilin-1 (NRP-1) and then to selectively inhibit VEGF165 binding to this receptor. In vivo, treatment with A7R resulted in decreasing breast cancer angiogenesis and growth. The present work is focused on structural characterization of A7R. Analogs of the peptide, obtained by substitution of each amino acid with alanine (alanine-scanning) or by amino acid deletion, have been systematically assayed to determine the relative importance of the side chains of each residue with respect to the inhibitory effect of A7R on VEGF165 binding to NRP-1. We show here the importance of the C-terminal sequence LPPR and particularly the key role of C-terminal arginine. In solution, A7R displays significant secondary structure of the backbone adopting an extended conformation. However, the functional groups of arginine are very flexible in the absence of NRP-1 pointing to an induced fit upon binding to the receptor. A MD trajectory of the A7R/NRP-1 complex in explicit water, based on the recent tuftsin/NRP-1 crystal structure, has revealed the hydrogen-bonding network that contributes to A7R's binding activity.  相似文献   

9.
The expression of HLA-DR1 (DRB1*0101) is associated with an enhanced risk for developing rheumatoid arthritis (RA). To study its function, we have solved the three-dimensional structure of HLA-DR1 complexed with a candidate RA autoantigen, the human type II collagen peptide CII (259-273). Based on these structural data, the CII peptide is anchored by Phe263 at the P1 position and Glu266 at P4. Surprisingly, the Lys at the P2 position appears to play a dual role by participating in peptide binding via interactions with DRB1-His81 and Asn82, and TCR interaction, based on functional assays. The CII peptide is also anchored by the P4 Glu266 residue through an ionic interaction with DRB1-Arg71 and Glu28. Participation of DRB1-Arg71 is significant because it is part of the shared epitope expressed by DR alleles associated with RA susceptibility. Potential anchor residues at P6 and P9 of the CII peptide are both Gly, and the lack of side chains at these positions appears to result in both a narrower binding groove with the peptide protruding out of the groove at this end of the DR1 molecule. From the TCR perspective, the P2-Lys264, P5-Arg267, and P8-Lys270 residues are all oriented away from the binding groove and collectively represent a positive charged interface for CII-specific TCR binding. Comparison of the DR1-CII structure to a DR1-hemagglutinin peptide structure revealed that the binding of these two peptides generates significantly different interfaces for the interaction with their respective Ag-specific TCRs.  相似文献   

10.
Antimicrobial peptides have gained a lot of interest in recent years due to their potential use as a new generation of antibiotics. It is believed that this type of relatively short, amphipathic, cationic peptide targets the bacterial membrane, and destroys the chemical gradients over the membrane via formation of stable or transient pores. Here we use the NMR structure of cyclo(RRWWRF) in a series of molecular dynamics simulations in membranes at various peptide/lipid ratios. We observe that the NMR structure of the peptide is still stable after 100 ns simulation. At a peptide/lipid ratio of 2:128, the membrane is only a little affected compared to a pure dipalmitoylphosphatidylcholine lipid membrane, but at a ratio of 12:128, the water-lipid interface becomes more fuzzy, the water molecules can reach deeper into the hydrophobic core, and the water penetration free-energy barrier changes. Moreover, we observe that the area per lipid decreases and the deuterium order parameters increase in the presence of the peptide. We suggest that the changes in the hydrophobic core, together with the changes in the headgroups, result in an imbalance of the membrane and that it is thus not an efficient hydrophobic barrier in the presence of the peptides, independent of pore formation.  相似文献   

11.
Abstract

Lysine-specific demethylase (LSD1) is an important enzyme for histone lysine methylation. Downregulated LSD1 expression has been linked to cancer proliferation, migration and invasion, indicating that it is an important target for anti-cancer medication. In the present study, the binding modes of a recent reported new series of LSD1 inhibitor were analyzed by using molecular docking and molecular dynamics simulations. A binding mode of these inhibitors was proposed based on the results. According to this binding mode, Thr628 can form two important hydrogen bonds with these inhibitors. Moreover, if the inhibitors can form an additional hydrogen bond with hydroxyl group of Ser289, the potency of the inhibitor can be greatly improved, such as the best inhibitor (compound 12d) in this series. Hydrophobic interactions between the inhibitors and LSD1 are also key contributor here, such as the interaction between the hydrophobic groups (benzene rings) of the inhibitors and the hydrophobic residues of LSD1 (including Val288, Val317, Val811, Ala814, Leu659, Trp751 and Tyr761). Based on the results and analysis, it may provide some useful information for future novel LSD1 inhibitor design.  相似文献   

12.
13.
Venken T  Daelemans D  De Maeyer M  Voet A 《Proteins》2012,80(6):1633-1646
The HIV Rev protein mediates the nuclear export of viral mRNA, and is thereby essential for the production of late viral proteins in the replication cycle. Rev forms a large organized multimeric protein-protein complex for proper functioning. Recently, the three-dimensional structures of a Rev dimer and tetramer have been resolved and provide the basis for a thorough structural analysis of the binding interaction. Here, molecular dynamics (MD) and binding free energy calculations were performed to elucidate the forces thriving dimerization and higher order multimerization of the Rev protein. It is found that despite the structural differences between each crystal structure, both display a similar behavior according to our calculations. Our analysis based on a molecular mechanics-generalized Born surface area (MM/GBSA) and a configurational entropy approach demonstrates that the higher order multimerization site is much weaker than the dimerization site. In addition, a quantitative hot spot analysis combined with a mutational analysis reveals the most contributing amino acid residues for protein interactions in agreement with experimental results. Additional residues were found in each interface, which are important for the protein interaction. The investigation of the thermodynamics of the Rev multimerization interactions performed here could be a further step in the development of novel antiretrovirals using structure based drug design. Moreover, the variability of the angle between each Rev monomer as measured during the MD simulations suggests a role of the Rev protein in allowing flexibility of the arginine rich domain (ARM) to accommodate RNA binding.  相似文献   

14.
A combination of fluorescence spectroscopy and molecular dynamics (MD) is applied to assess the conformational dynamics of a peptide making up the outermost ring of the nicotinic acetylcholine receptor (AChR) transmembrane region and the effect of membrane thickness and cholesterol on the hydrophobic matching of this peptide. The fluorescence studies exploit the intrinsic fluorescence of the only tryptophan residue in a synthetic peptide corresponding to the fourth transmembrane domain of the AChR gamma subunit (gammaM4-Trp(6)) reconstituted in lipid bilayers of varying thickness, and combine this information with quenching studies using depth-sensitive phosphatidylcholine spin-labeled probes and acrylamide, polarization of fluorescence, and generalized polarization of Laurdan. A direct correlation was found between bilayer width and the depth of insertion of Trp(6). We further extend our recent MD study of the conformational dynamics of the AChR channel to focus on the crosstalk between M4 and the lipid-belt region. The isolated gammaM4 peptide is shown to possess considerable orientational flexibility while maintaining a linear alpha-helical structure, and to vary its tilt depending on bilayer width and cholesterol (Chol) content. MD studies also show that gammaM4 also establishes contacts with the other TM peptides on its inner face, stabilizing a shorter TM length that is still highly sensitive to the lipid environment. In the native membrane the topology of the M4 ring is likely to exhibit a similar behavior, dynamically modifying its tilt to match the hydrophobic thickness of the bilayer.  相似文献   

15.
Thioflavin T (ThT) is a fluorescent dye commonly used to stain amyloid plaques, but the binding sites of this dye onto fibrils are poorly characterized. We present molecular dynamics simulations of the binding of ThT and its neutral analog BTA-1 [2-(4'-methylaminophenyl)benzothiazole] to model protofibrils of the Alzheimer's disease Abeta(16-22) (amyloid beta) peptide. Our simulations reveal two binding modes located at the grooves of the beta-sheet surfaces and at the ends of the beta-sheet. These simulations provide new insight into recent experimental work and allow us to characterize the high-capacity, micromolar-affinity site seen in experiment as binding to the beta-sheet surface grooves and the low-capacity, nanomolar-affinity site seen as binding to the beta-sheet extremities of the fibril. The structure-activity relationship upon mutating charged ThT to neutral BTA-1 in terms of increased lipophilicity and binding affinity was studied, with calculated solvation free energies and binding energies found to be in qualitative agreement with the experimental measurements.  相似文献   

16.
A homology model of the ligand binding domain of the alpha7 nicotinic receptor is constructed based on the acetylcholine-binding protein crystal structure. This structure is refined in a 10 ns molecular dynamics simulation. The modeled structure proves fairly resilient, with no significant changes at the secondary or tertiary structural levels. The hypothesis that the acetylcholine-binding protein template is in the activated or desensitized state, and the absence of a bound agonist in the simulation suggests that the structure may also be relaxing from this state to the activatable state. Candidate motions that take place involve not only the side chains of residues lining the binding sites, but also the subunit positions that determine the overall shape of the receptor. In particular, two nonadjacent subunits move outward, whereas their partners counterclockwise to them move inward, leading to a marginally wider interface between themselves and an overall asymmetric structure. This in turn affects the binding sites, producing two that are more open and characterized by distinct side-chain conformations of W54 and L118, although motions of the side chains of all residues in every binding site still contribute to a reduction in binding site size, especially the outward motion of W148, which hinders acetylcholine binding. The Cys loop at the membrane interface also displays some flexibility. Although the short simulation timescale is unlikely to sample adequately all the conformational states, the pattern of observed motions suggests how ligand binding may correlate with larger-scale subunit motions that would connect with the transmembrane region that controls the passage of ions. Furthermore, the shape of the asymmetry with binding sites of differing affinity for acetylcholine, characteristic of other nicotinic receptors, may be a natural property of the relaxed, activatable state of alpha7.  相似文献   

17.
Cheng MH  Cascio M  Coalson RD 《Proteins》2007,68(2):581-593
Homology modeling is used to build initial models of the transmembrane domain of the human alpha1 glycine receptor (GlyR) based on the most recently published refined structure of nAChR (PDB ID: 2BG9). Six preliminary GlyR models are constructed using two different approaches. In one approach, five different homopentamers are built by symmetric assembly of alpha1 GlyR subunits using only one of the five unique chains of nAChR as a template. In a second approach, each nAChR subunit serves as a template for an alpha1 GlyR subunit. All six initial GlyR constructs are then embedded into a hydrated POPC lipid bilayer and subjected to molecular dynamics simulation for at least six nanoseconds. Each model is stable throughout the simulation, and the final models fall into three distinct categories. Homopentameric GlyR bundles using a single alpha nAChR subunit as a template appear to be in an open conformation. Under an applied external potential, permeation of Cl(-) ions is observed within several ns in a channel built on an alpha chain. Model channels built on non-alpha chains have a constriction either near the intracellular mouth or more centrally located in the pore domain, both of which may be narrow enough to close the channel and whose locations correspond to putative gates observed in nicotinicoid receptors. The differences between these three general models suggest that channel closure may be effected by either rotation or tangential tilting of TM2.  相似文献   

18.
Octopamine receptors (OARs) perform key biological functions in invertebrates, making this class of G‐protein coupled receptors (GPCRs) worth considering for insecticide development. However, no crystal structures and very little research exists for OARs. Furthermore, GPCRs are large proteins, are suspended in a lipid bilayer, and are activated on the millisecond timescale, all of which make conventional molecular dynamics (MD) simulations infeasible, even if run on large supercomputers. However, accelerated Molecular Dynamics (aMD) simulations can reduce this timescale to even hundreds of nanoseconds, while running the simulations on graphics processing units (GPUs) would enable even small clusters of GPUs to have processing power equivalent to hundreds of CPUs. Our results show that aMD simulations run on GPUs can successfully obtain the active and inactive state conformations of a GPCR on this reduced timescale. Furthermore, we discovered a potential alternate active‐state agonist‐binding position in the octopamine receptor which has yet to be observed and may be a novel GPCR agonist‐binding position. These results demonstrate that a complex biological system with an activation process on the millisecond timescale can be successfully simulated on the nanosecond timescale using a simple computing system consisting of a small number of GPUs. Proteins 2016; 84:1480–1489. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
Multiple classical molecular dynamics simulations have been applied to the human LOX‐1 receptor to clarify the role of the Trp150Ala mutation in the loss of binding activity. Results indicate that the substitution of this crucial residue, located at the dimer interface, markedly disrupts the wild‐type receptor dynamics. The mutation causes an irreversible rearrangement of the subunits interaction pattern that in the wild‐type protein allows the maintaining of a specific symmetrical motion of the monomers. The subunits dislocation determines a loss of linearity of the arginines residues composing the basic spine and a consequent alteration of the long‐range electrostatic attraction of the substrate. Moreover, the anomalous subunits arrangement observed in the mutated receptor also affects the integrity of the hydrophobic tunnel, actively involved in the short‐range hydrophobic recognition of the substrate. The combined effect of these structural rearrangements generates the impairing of the receptor function.  相似文献   

20.
The goal of this work is to probe the interaction between cyclic cHAVc3 peptide and the EC1 domain of human E-cadherin protein. Cyclic cHAVc3 peptide (cyclo(1,6)Ac-CSHAVC-NH2) binds to the EC1 domain as shown by chemical shift perturbations in the 2D 1H,-15N-HSQC NMR spectrum. The molecular dynamics (MD) simulations of the EC1 domain showed folding of the C-terminal tail region into the main head region of the EC1 domain. For cHAVc3 peptide, replica exchange molecular dynamics (REMD) simulations generated five structural clusters of cHAVc3 peptide. Representative structures of cHAVc3 and the EC1 structure from MD simulations were used in molecular docking experiments with NMR constraints to determine the binding site of the peptide on EC1. The results suggest that cHAVc3 binds to EC1 around residues Y36, S37, I38, I53, F77, S78, H79, and I94. The dissociation constants (Kd values) of cHAVc3 peptide to EC1 were estimated using the NMR chemical shifts data and the estimated Kds are in the range of .5 × 10?5–7.0 × 10?5 M.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号