首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The three HLA class II alleles of the DR2 haplotype, DRB1*1501, DRB5*0101, and DQB1*0602, are in strong linkage disequilibrium and confer most of the genetic risk to multiple sclerosis. Functional redundancy in Ag presentation by these class II molecules would allow recognition by a single TCR of identical peptides with the different restriction elements, facilitating T cell activation and providing one explanation how a disease-associated HLA haplotype could be linked to a CD4+ T cell-mediated autoimmune disease. Using combinatorial peptide libraries and B cell lines expressing single HLA-DR/DQ molecules, we show that two of five in vivo-expanded and likely disease-relevant, cross-reactive cerebrospinal fluid-infiltrating T cell clones use multiple disease-associated HLA class II molecules as restriction elements. One of these T cell clones recognizes >30 identical foreign and human peptides using all DR and DQ molecules of the multiple sclerosis-associated DR2 haplotype. A T cell signaling machinery tuned for efficient responses to weak ligands together with structural features of the TCR-HLA/peptide complex result in this promiscuous HLA class II restriction.  相似文献   

2.
The contributions of the amino acids at 13 polymorphic positions in the HLA-DR7 beta 1 chain to T cell recognition of two antigenic peptides of tetanus toxin (p2 and p30) were assessed using transfectants expressing mutant DR7 beta 1 chains as APC for six toxin-specific T cell clones with two different restriction patterns: monogamous (restricted by DR7 only) or promiscuous (restricted by DR7; DR1; DR2, Dw21; and DR4, Dw4). Each of the 13 substitutions significantly decreased or eliminated the ability of the DR7 molecule to present a peptide to one or more of the T cell clones, but none of the substitutions abolished recognition by all clones. Interestingly, substitutions at positions 4 and 25, which are predicted in the class II model to be located outside the peptide binding groove, decreased the ability of the DR7 molecule to present Ag to some clones but not to others. Each of the four clones specific for the p2 peptide and the two clones specific for peptide p30 had a different reactivity pattern to the panel of DR7 beta 1 mutants, indicating that the TCR of each clone has a different view of the p2/DR7 or p30/DR7 complex. These data emphasize the complexity of the interactions of multiple residues in DR7 beta 1 chains in Ag-specific T cell recognition.  相似文献   

3.
We have previously shown that p3-13 (KTIAY-DEEARR) of the 65-kDa heat shock protein (hsp65) of Mycobacterium tuberculosis and Mycobacterium leprae is selected as an important T cell epitope in HLA-DR17+ individuals, by selectively binding to (a pocket in) DR17 molecules, the major subset of the DR3 specificity. We have now further studied the interaction between p3-13, HLA-DR17 and four different TCR (V beta 5.1, V beta 1, and V beta 4) by using T cell stimulation assays, direct peptide-DR binding assays, and a large panel (n = 240) of single amino acid substitution analogs of p3-13. We find that residues 5(I) and 8(D) of p3-13 are important DR17 binding residues, whereas the residues that interact with the TCR vary slightly for each DR17-restricted clone. By using N- and C-terminal truncated derivatives of p2-20 we defined the minimal peptide length for both HLA-DR17 binding and T cell activation: the minimal peptide that bound to DR17 was seven amino acids long whereas the minimal peptide that activated T cell proliferation was eight amino acids in length. Furthermore, two new DR17-restricted epitopes were identified on hsp70 and hsp18 of M. leprae. Alignment of the critical DR17-binding residues 5(I) and 8(D) of p3-13 with these two novel epitopes and two other DR17-binding peptides revealed the presence of highly conserved amino acids at positions n and n + 3 with I, L, and V at position n and D and E at position n + 3. D and E are particularly likely to interact with the DR17-specific, positively charged pocket that we have defined earlier. Based on these results, a set of single amino acid substituted analogs that failed to activate these T cell clones but still bound specifically to DR17 was defined and tested for their ability to inhibit T cell activation by p3-13 or other DR17-restricted epitopes. Those peptides were able to inhibit the response to p3-13 as well as other DR17-restricted mycobacterial epitopes in an allele-specific manner, and are anticipated to be of potential use for immunotherapeutic and vaccine design strategies.  相似文献   

4.
The expression of HLA-DR1 (DRB1*0101) is associated with an enhanced risk for developing rheumatoid arthritis (RA). To study its function, we have solved the three-dimensional structure of HLA-DR1 complexed with a candidate RA autoantigen, the human type II collagen peptide CII (259-273). Based on these structural data, the CII peptide is anchored by Phe263 at the P1 position and Glu266 at P4. Surprisingly, the Lys at the P2 position appears to play a dual role by participating in peptide binding via interactions with DRB1-His81 and Asn82, and TCR interaction, based on functional assays. The CII peptide is also anchored by the P4 Glu266 residue through an ionic interaction with DRB1-Arg71 and Glu28. Participation of DRB1-Arg71 is significant because it is part of the shared epitope expressed by DR alleles associated with RA susceptibility. Potential anchor residues at P6 and P9 of the CII peptide are both Gly, and the lack of side chains at these positions appears to result in both a narrower binding groove with the peptide protruding out of the groove at this end of the DR1 molecule. From the TCR perspective, the P2-Lys264, P5-Arg267, and P8-Lys270 residues are all oriented away from the binding groove and collectively represent a positive charged interface for CII-specific TCR binding. Comparison of the DR1-CII structure to a DR1-hemagglutinin peptide structure revealed that the binding of these two peptides generates significantly different interfaces for the interaction with their respective Ag-specific TCRs.  相似文献   

5.
Anergy induction by dimeric TCR ligands   总被引:4,自引:0,他引:4  
T cells that recognize particular self Ags are thought to be important in the pathogenesis of autoimmune diseases. In multiple sclerosis, susceptibility is associated with HLA-DR2, which can present myelin-derived peptides to CD4(+) T cells. To generate molecules that target such T cells based on the specificity of their TCR, we expressed a soluble dimeric DR2-IgG fusion protein with a bound peptide from myelin basic protein (MBP). Soluble, dimeric DR2/MBP peptide complexes activated MBP-specific T cells in the absence of signals from costimulatory or adhesion molecules. This initial signaling through the TCR rendered the T cells unresponsive (anergic) to subsequent activation by peptide-pulsed APCs. Fluorescent labeling demonstrated that anergic T cells were initially viable, but became susceptible to late apoptosis due to insufficient production of cytokines. Dimerization of the TCR with bivalent MHC class II/peptide complexes therefore allows the induction of anergy in human CD4(+) T cells with a defined MHC/peptide specificity.  相似文献   

6.
We sought to identify an altered peptide ligand (APL) based on the endogenously expressed synovial auto-epitope of human cartilage glycoprotein-39 (HC gp-39) for modulation of cognate, HLA-DR4-restricted T cells. For this purpose we employed a panel of well-characterized T cell hybridomas generated from HC gp-39-immunized HLA-DR4 transgenic mice. The hybridomas all respond to the HC gp-39(263-275) epitope when bound to HLA-DR4(B1*0401) but differ in their fine specificities. First, the major histocompatibility complex (MHC) and T-cell receptor (TCR) contact residues were identified by analysis of single site substituted analogue peptides for HLA-DR4 binding and cognate T cell recognition using both T hybridomas and polyclonal T cells from peptide-immunized HLA-DR4 transgenic mice. Analysis of single site substituted APL by cognate T cells led to identification of Phe265 as the dominant MHC anchor. The amino acids Ala268, Ser269, Glu271 and Thr272 constituted the major TCR contact residues, as substitution at these positions did not affect HLA-DR4(B1*0401) binding but abrogated T cell responses. A structural model for visualisation of TCR recognition was derived. Second, a set of non-classical APLs, modified at the MHC key anchor position but with unaltered TCR contacts, was developed. When these APLs were analysed, a partial TCR agonist was identified and found to modulate the HC gp-39(263-275)-specific, pro-inflammatory response in HLA-DR4 transgenic mice. We identified a non-classical APL by modification of the p1 MHC anchor in a synovial auto-epitope. This APL may qualify for rheumatoid arthritis immunotherapy.  相似文献   

7.
The self-restriction of Ag-specific T cell responses is interpreted as the result of a positive selection of the individual's T cell specificities for their compatibility with self-MHC molecules. If the T cell receptor (TCR) specificities in any given individual have an affinity for syngeneic MHC molecules, it is unclear how they interact with allogeneic MHC structures. To approach this question, we analyzed 123 alloreactive HLA-DR4 Dw4 or Dw14 specific T cell clones that were generated from responder/stimulator combinations with defined disparities in the HLA-DR beta 1-chain. Sets of T cell clones were established from three different HLA-Dw4+ responders and compared for their fine specificities. The majority of HLA-DR4 Dw14 specific T cell clones co-recognized HLA-DR1 Dw1+ (33 to 36% of all T cell clones) or HLA-DRw14 Dw16+ (26 to 33%) stimulators, both of which share very similar sequences in the third hypervariable region of the HLA-DR beta 1-chain with the HLA-DR4 alleles Dw4 and Dw14. These data suggest that sequence and structural similarities in the alpha-helical portions of the HLA-DR molecule impose a strong bias on the recognition of allotargets. The second haplotype of the responder did not appear to affect the typical fingerprint of T cell recognition except for the deletion of self-reactive TCR specificities. Nonrandom usage of TCR specificities in anti-HLA-DR responses was also found for HLA-DRw11/DRw13+ and HLA-DRw11/DR7+ T cell donors who did not share any obvious polymorphic sequence stretches with the allostimulators HLA-DR4 Dw4 or Dw14. T cell clones from an HLA-DRw11/DRw13+ responder functionally resembled the TCR specificities derived from the HLA-DR4 Dw4+ donors. T cell clones derived from an HLA-DRw11/DR7+ individual were characterized by a distinct cross-reactivity pattern preferring HLA-DRw13 Dw19+ (50 to 60%) and HLA-DR3+ (43 to 57%) stimulator cells. These findings suggest that the responder HLA-DR alleles influence the structural constraints in the recognition of allo-HLA-DR molecules in closely related and in completely disparate responder/stimulator combinations.  相似文献   

8.
We sought to identify an altered peptide ligand (APL) based on the endogenously expressed synovial auto-epitope of human cartilage glycoprotein-39 (HC gp-39) for modulation of cognate, HLA-DR4-restricted T cells. For this purpose we employed a panel of well-characterized T cell hybridomas generated from HC gp-39-immunized HLA-DR4 transgenic mice. The hybridomas all respond to the HC gp-39(263–275) epitope when bound to HLA-DR4(B1*0401) but differ in their fine specificities. First, the major histocompatibility complex (MHC) and T-cell receptor (TCR) contact residues were identified by analysis of single site substituted analogue peptides for HLA-DR4 binding and cognate T cell recognition using both T hybridomas and polyclonal T cells from peptide-immunized HLA-DR4 transgenic mice. Analysis of single site substituted APL by cognate T cells led to identification of Phe265 as the dominant MHC anchor. The amino acids Ala268, Ser269, Glu271 and Thr272 constituted the major TCR contact residues, as substitution at these positions did not affect HLA-DR4(B1*0401) binding but abrogated T cell responses. A structural model for visualisation of TCR recognition was derived. Second, a set of non-classical APLs, modified at the MHC key anchor position but with unaltered TCR contacts, was developed. When these APLs were analysed, a partial TCR agonist was identified and found to modulate the HC gp-39(263–275)-specific, pro-inflammatory response in HLA-DR4 transgenic mice. We identified a non-classical APL by modification of the p1 MHC anchor in a synovial auto-epitope. This APL may qualify for rheumatoid arthritis immunotherapy.  相似文献   

9.
The contributions to allorecognition of polymorphic amino acids in the HLA-DR7 beta 1 chain were analyzed by using mutant DR7 beta 1 chains with single amino acid substitutions at position 4, 11, 13, 25, 30, 37, 57, 60, 67, 70, 71, 74, or 78. Transfectants expressing mutant DR7 molecules were used as stimulators for six DR7-alloreactive T cell clones. The majority of the substitutions had profound effects on the ability of the DR7 molecule to stimulate one or more T cell clones. Nine of the 13 substitutions completely abrogated recognition by at least one clone. The finding that each of the substitutions in the beta-strands in the floor of the peptide binding groove affected T cell allorecognition supports the model of allorecognition in which the complex of a self-peptide bound to a class II molecule is recognized by the TCR. Interestingly, the substitution at position 4, which is predicted to be located outside the peptide binding groove, decreased the ability of the DR7 molecule to stimulate some clones. Each of the DR7-alloreactive T cell clones had a unique reactivity pattern in response to the different mutant molecules, indicating that the TCR of each clone recognized the DR7 molecule differently. Surprisingly, many of the mutant DR7 molecules induced proliferation by one or more clones that was greater than 125% of the proliferation induced by the wild-type DR7 molecule. These data indicate that multiple polymorphic residues, predicted in the class II model to be located in both the beta-strands and alpha-helix of the DR7 beta 1 chain, contribute to allorecognition of the DR7 molecule.  相似文献   

10.
The HLA-DRB1*0401 MHC class II molecule (DR4) is genetically associated with rheumatoid arthritis. It has been proposed that this MHC class II molecule participates in disease pathogenesis by presenting arthritogenic endogenous or exogenous peptides to CD4+ T cells, leading to their activation and resulting in an inflammatory response within the synovium. In order to better understand DR4 restricted T cell activation, we analyzed the candidate arthritogenic antigens type II collagen, human aggrecan, and the hepatitis B surface antigen for T-cell epitopes using a predictive model for determining peptide-DR4 affinity. We also applied this model to determine whether cross-reactive T-cell epitopes can be predicted based on known MHC-peptide-TCR interactions. Using the HLA-DR4-IE transgenic mouse, we showed that both T-cell proliferation and Th1 cytokine production (IFN-gamma) correlate with the predicted affinity of a peptide for DR4. In addition, we provide evidence that TCR recognition of a peptide-DR4 complex is highly specific in that similar antigenic peptide sequences, containing identical amino acids at TCR contact positions, do not activate the same population of T cells.  相似文献   

11.
The crystal structures of two human TCRs specific for a HTLV-I Tax peptide bound to HLA-A2 were recently determined, for the first time allowing a functional comparison of TCRs for which the MHC/peptide/TCR structures are known. Extensive amino acid substitutions show that the native Tax residues are optimal at each peptide position. A prominent feature of the TCR contact surface is a deep pocket that accommodates a tyrosine at position 5 of the peptide. For one of these TCRs, this pocket is highly specific for aromatic residues. In the other TCR structure, this pocket is larger, allowing many different residues to be accommodated. The CTL clones also show major differences in the specificity for several other peptide residues, including side chains that are not directly contacted by the TCR. Despite the specificity of these clones, peptides that are distinct at five or six positions from Tax11-19 induce CTL activity, indicating that substantial changes of the peptide surface are tolerated. Human peptides with limited sequence homology to Tax11-19 represent partial TCR agonists for these CTL clones. The distinct functional properties of these CTL clones highlight structural features that determine TCR specificity and cross-reactivity for MHC-bound peptides.  相似文献   

12.
We used a silicon-based biosensor, a microphysiometer, to measure real-time extracellular acidification rate signals associated with T lymphocyte responses to peptide ligands interacting with the T-cell receptor (TCR). We compared these effector responses with those of interferon-gamma (IFN-gamma) production, and T-cell proliferation. Within minutes, major histocompatibility complex (MHC)-bound peptides on antigen-presenting cells (APCs) engaged the TCR to increase acidification rates of the extracellular media was measured by microphysiometer. We exposed two myelin peptide-specific human T-cell clones, MSF132E11 (DRB1*1501 restricted) and TOM3A6 (DRB5*0101 restricted), to truncated analogues of the parent MBP 84-102 peptide, in the presence of MHC restricted human antigen-presenting cells, and measured the extracellular acidification rate signal changes, IFN-gamma production and T-cell proliferation. The core epitopes recognized by these clones were identified by microphysiometer and found to be MBP 88-100 and MBP 91-100, respectively. These epitopes were identical to those identified by the IFN-gamma and proliferation assays. We conclude that measurement of real-time extracellular acidification rate signals by the microphysiometer may facilitate rapid identification of human T-cell epitopes involved in immune disorders and the development of specific T-cell antagonists.  相似文献   

13.
The interplay between T cell receptors (TCRs) and peptides bound by major histocompatibility complexes (MHCs) is one of the most important interactions in the adaptive immune system. Several previous studies have computationally investigated their structural dynamics. On the basis of these simulations several structural and dynamical properties have been proposed as effectors of the immunogenicity. Here we present the results of a large scale Molecular Dynamics simulation study consisting of 100 ns simulations of 172 different complexes. These complexes consisted of all possible point mutations of the Epstein Barr Virus peptide FLRGRAYGL bound by HLA-B*08:01 and presented to the LC13 TCR. We compare the results of these 172 structural simulations with experimental immunogenicity data. We found that simulations with more immunogenic peptides and those with less immunogenic peptides are in fact highly similar and on average only minor differences in the hydrogen binding footprints, interface distances, and the relative orientation between the TCR chains are present. Thus our large scale data analysis shows that many previously suggested dynamical and structural properties of the TCR/peptide/MHC interface are unlikely to be conserved causal factors for peptide immunogenicity.  相似文献   

14.
Supra-agonist peptides enhance the reactivation of memory CTL responses   总被引:2,自引:0,他引:2  
Single amino acid substitutions at TCR contacts may transform a natural peptide Ag in CTL ligands with partial agonist, antagonist, or null activity. We obtained peptide variants by changing nonanchor amino acid residues involved in MHC class I binding. These peptides were derived from a subdominant HLA-A2-presented, latent membrane protein 2-derived epitope expressed in EBV-infected cells and in EBV-associated tumors. We found that small structural changes produced ligands with vastly different activities. In particular, the variants that associated more stably to HLA-A2/molecules did not activate any CTL function, behaving as null ligands. Interestingly, T cell stimulations performed with the combination of null ligands and the natural epitope produced significantly higher specific CTL reactivation than reactivation of CTLs induced by the wild-type epitope alone. In addition, these particular variants activated memory CTL responses in the presence of concentrations of natural epitope that per se did not induce T cell responses. We show here that null ligands increased ZAP-70 tyrosine kinase activation induced by the natural epitope. Our results demonstrate for the first time that particular peptide variants, apparently behaving as null ligands, interact with the TCR, showing a supra-agonist activity. These variant peptides did not affect the effector T cell functions activated by the natural epitope. Supra-agonist peptides represent the counterpart of antagonists and may have important applications in the development of therapeutic peptides.  相似文献   

15.
Monovalent major histocompatibility complex-peptide complexes dissociate within seconds from the T-cell receptor (TCR), indicating that dimerization/multimerization may be important during early stages of T-cell activation. Soluble bivalent HLA-DR2.myelin basic protein (MBP) peptide complexes were expressed by replacing the F(ab) arms of an IgG2a antibody with HLA-DR2.MBP peptide complexes. The binding of bivalent HLA-DR2.peptide complexes to recombinant TCR was examined by surface plasmon resonance. The bivalent nature greatly enhanced TCR binding and slowed dissociation from the TCR, with a t((1)/(2)) of 2.1 to 4.6 min. Soluble bivalent HLA-DR2.MBP peptide complexes activated antigen-specific T-cells in the absence of antigen presenting cells. In contrast, soluble antibodies to the TCR.CD3 complex were ineffective, indicating that they failed to induce an active TCR dimer. TCR/CD3 antibodies induced T-cell proliferation when bound by antigen presenting cells that expressed Fc receptors. In the presence of dendritic cells, bivalent HLA-DR2. MBP peptide complexes induced T-cell activation at >100-fold lower concentrations than TCR/CD3 antibodies and were also superior to peptide or antigen. These results demonstrate that bivalent HLA-DR. peptide complexes represent effective ligands for activation of the TCR. The data support a role for TCR dimerization in early TCR signaling and kinetic proofreading.  相似文献   

16.
Class I and class II MHC glycoproteins are highly polymorphic molecules that bind antigenic peptides and present them on cell surfaces for recognition by T lymphocytes. Even though MHC polymorphism has long been known to affect both peptide binding and recognition by the TCR, the role of individual amino acids of MHC proteins in these interactions is poorly understood. To examine the effect of a small number of amino acid residues on T cell stimulation, B lymphoblastoid cell lines homozygous for the closely related DR1 subtypes, Dw1 and Dw20, and the DR4 subtypes, Dw4 and Dw14, were compared for their ability to present an immunogenic influenza hemagglutinin peptide (HA307-319) to an Ag-specific, DR1,4-restricted T cell clone. B cell lines expressing DR1 Dw20 and DR4 Dw14 presented HA307-319 much less efficiently than DR1 Dw1 and DR4 Dw4 and bound a biotinylated analogue of the same peptide less well. Analysis of DRB1 gene sequences suggested that polymorphism at residue 86 had a major effect on peptide binding. Differences in binding of a set of HA307-319 analogues biotinylated at each residue to cells expressing DR1 Dw1 and DR1 Dw20 suggested that the polymorphism affected the interactions of many peptide residues with the class II molecule. In inhibition assays, DR1 Dw1 and DR4 Dw4 were shown to differ from DR1 Dw20 and DR4 Dw14 in their length requirements for peptide binding. Using a larger panel of homozygous B cell lines expressing many class II haplotypes, a Ser-309 substituted HA307-319 analogue was shown to bind to most B cell lines expressing Val-86 containing alleles (including DR1 Dw20 and DR4 Dw14) but failed to bind most B cell lines expressing Gly-86 alleles (including DR1 Dw1 and DR4 Dw4). The results indicated that polymorphism at residue 86 influenced the specificity and affinity of peptide binding and affected the conformation of peptide-DR protein complexes without completely eliminating T cell recognition.  相似文献   

17.
Transplantation of histoincompatible tissues leads to allograft rejection, which involves recognition of allogeneic MHC molecules by Ag-specific receptors expressed on T cells. The interaction of these molecules is highly specific yet poorly understood. We have investigated the relationship between TCR gene utilization and allo-MHC restriction patterns by using a one-way polymerase chain reaction to amplify the alpha- and beta-chain mRNA from a panel of 10 HLA-DR1-alloreactive T lymphocyte clones. Two previously unreported V alpha and five J alpha gene sequences were obtained. Although a few V alpha, V beta, and J alpha genes were utilized more than once, no correlation between TCR gene usage and DR1 alloreactivity was identified. At the sequence level, the presumed TCR alpha- and beta-chain CDR1 and CDR2 regions displayed limited diversity, whereas the CDR3 or junctional sequences were highly variable. Although most TCR probably interact with subtly different surface features of the DR1 alloantigen, we predict that TCR with similar CDR1 and CDR2 sequences would contact essentially identical regions of the DR1 molecule. The lack of sequence conservation in the junctional regions suggests that different endogenous peptides also may be recognized. Thus, alloreactive T cells may recognize not only allogeneic MHC molecules but perhaps also bound endogenous peptides.  相似文献   

18.
A systematic series of 89 single residue substitution analogs of the Mycobacterium leprae 65-kDa protein-derived peptide LQAAPALDKL were tested for stimulation of two HLA-DR2 restricted 65 kDa-reactive T cell clones from a tuberculoid leprosy patient. Some analogs with substitutions outside a "core" region showed enhanced stimulation of the T cell clones. This core region of seven or eight residues was essential for recognition, whereas substitution of amino acids outside this region did not affect T cell recognition although these residues could not be omitted. Thus these core residues interact directly with the presenting HLA-DR2 molecule and/or the TCR. Except for analogs of position 419 for clone 2B6, the majority of the nonstimulatory substitution analogs did not inhibit the presentation of LQAAPALDKL and thus probably failed to bind to the HLA-DR2 molecule. Unless all of the core residues are physically involved in binding to DR2, substitution at a position not directly involved in binding appears to have an influence on other residues that do bind to the DR2 molecule. Active peptide analogs with two or more internal prolines suggest that not all analogs need be helical for activity with clone 2F10.  相似文献   

19.
The aim of these studies was to determine whether auto- and alloreactivity can arise from T cell recognition of MHC-peptides in context of syngeneic MHC. Four synthetic peptides derived from the first domain of the HLA-DR beta 1 * 0101 chain were used in limiting dilution analysis to prime T cells from HLA-DR1- and HLA-DR1+ responders. The frequency of T cells responding to these four peptides was similar in individuals with or without HLA-DR1. In both cases, the peptide corresponding to the nonpolymorphic sequence 43-62, was less immunogenic than peptides corresponding to the three hypervariable regions 1-20, 21-42, and 66-90, eliciting a lower number of reactive T cells. Experiments using a T cell line with specific reactivity to peptide 21-42 showed, however, that this response can be efficiently blocked by adding to the culture a nonpolymorphic sequence peptide. This suggests that alloreactivity can be blocked by use of monomorphic (self) peptides. The binding of both "monomorphic" and "polymorphic" synthetic DR1 peptides to affinity purified HLA-DR 1 and DR 11 molecules was measured using radiolabeled peptides and high performance size exclusion chromatography. The data showed that the polymorphic as well as monomorphic synthetic DR1 peptides bound to both DR1 and DR11 molecules. Competitive inhibition studies indicated that the monomorphic 43-62 peptide can block the binding of the polymorphic peptides, consistent with the results obtained in T cell cultures. Taken together these data suggest that anti-MHC autoreactive T cells are present in the periphery and that both auto and alloreactivity can be elicited by MHC peptides binding to MHC class II molecules.  相似文献   

20.
Binding of peptide/MHC (pMHC) complexes by TCR initiates T cell activation. Despite long interest, the exact relationship between the biochemistry of TCR/pMHC interaction (particularly TCR affinity or ligand off-rate) and T cell responses remains unresolved, because the number of complexes examined in each independent system has been too small to draw a definitive conclusion. To test the current models of T cell activation, we have analyzed the interactions between the mouse P14 TCR and a set of altered peptides based on the lymphocytic choriomeningitis virus epitope gp33-41 sequence bound to mouse class I MHC D(b). pMHC binding, TCR-binding characteristics, CD8+ T cell cytotoxicity, and IFN-gamma production were measured for the peptides. We found affinity correlated well with both cytotoxicity and IFN-gamma production. In contrast, no correlation was observed between any kinetic parameter of TCR-pMHC interaction and cytotoxicity or IFN-gamma production. This study strongly argues for an affinity threshold model of T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号