首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
In this communication, we describe the isolation of a Lactobacillus delbrueckii subsp. bulgaricus 92063 mutant strain named pH-P11, which differed from the parent strain by low proteolytic activity and altered regulation of expression of lacZ in the presence of glucose or lactose. In the presence of lactose, beta-galactosidase activity was approximately twice as high in pH-P11 than in the wild type. pH-P11 exhibited protosymbiosis together with Streptococcus thermophilus. Yoghurt produced with pH-P11 was characterized by low acidity and little post-acidification during storage. The organoleptic properties (absence of bitterness and other off-flavors, weak sourness, and clear yoghurt taste) were those of a typical "yoghurt mild". This mild flavor was achieved at rather high cell counts of lactobacilli even at the end of shelf-life. High cell counts in conjunction with high beta-galactosidase activity make pH-P11 an interesting strain for application in yoghurt especially designed for consumers with lactose malabsorption. In contrast to "yoghurt mild", which is predominantly produced with Lactobacillus acidophilus together with Streptococcus thermophilus, the product obtained by fermentation with pH-P11 and Streptococcus thermophilus concurs with international standards for yoghurt. During frequent sub-culturing, strain pH-P11, which is supposed to differ from the wild type by one or a few so-far-not-characterized mutations, showed sufficient stability for application in industrial production.  相似文献   

2.
Aims:  To evaluate the activities of six Lactobacillus delbrueckii subsp. bulgaricus (LB) strains against 30 Helicobacter pylori strains by agar-well diffusion method.
Methods and Results:  LB cultures [4 × 108–4 × 109 CFU ml−1) either were prepared in milk at their native pH, 3·8–5·0, or were adjusted to pH 6·4–7·7. At low and neutralized pH, LB strains inhibited the growth by 40–86·7% and 16·7–66·7% of H. pylori strains, respectively. LB activity was strain-dependent. At low and neutralized pH, one and five H. pylori strains, respectively, were not inhibited by any LB strain. LB2 and LB3, taken together, were active against most metronidazole and clarithromycin resistant strains.
Conclusions:  All LB strains inhibited a number of H. pylori strains, including also antibiotic resistant strains. LB activity was strain-dependent and better at low pH. At low pH values, the most active LB strains were LB1, LB2 and LB3, inhibiting 86·7% of H. pylori strains, while at neutralized pH values, the most active LB strains were LB2 and LB3, inhibiting 53·3 and 66·7% of H. pylori strains, respectively.
Significance and Impact of the Study:  LB could be utilized in the treatment or prophylaxis of H. pylori infection and warrants clinical investigations.  相似文献   

3.
AIMS: Sequences related to Lactobacillus delbrueckii phage JCL1032 genome integration, the maintenance of lysogeny and putative immunity genes were characterized. Phenotypic changes of the JCL1032 lysogens were investigated. METHODS AND RESULTS: Integration of JCL1032 DNA into the host genome and the location of phage and bacterial attachment sites were studied by standard molecular methods. The frequency of lysogenization was 10(-7), and stable lysogeny was an even rarer phenomenon. JCL1032 integrates its genome into two distinct host genes of unknown functions. According to EOP (efficiency of plating) and adsorption tests JCL1032 lysogens showed resistance against several virulent and temperate Lactobacillus phages at different steps of phage infection. CONCLUSIONS: Temperate JCL1032 integrates its genome into bacterial DNA with exceptionally low frequency. JCL1032 lysogens express a complex phage resistance against several Lact. delbrueckii phages. An antagonistic arms race between the temperate phage and its host is proposed. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first time that the genome integration of a group c Lact. delbrueckii phage has been described. The characterized lysogens could facilitate studies on Lact. delbrueckii phage receptors and phage resistance mechanisms. The genetic information gained from this study benefits the development of integration vectors and phage resistant starters.  相似文献   

4.
Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483, when grown on lactose in continuous culture, showed increasing specific yields and volumetric productivities of exopolysaccharide (EPS) with increasing dilution rate. Specific and volumetric productivities of lactate and galactose, as extracellular metabolites, increased in response to the incremental changes in the dilution rate up to 0.4 h–1. Elevated Yp/s values determined for EPS (0.025 g EPSg lactose–1) at the dilution rates of 0.3 h–1–0.4 h–1, relative to those determined at lower dilution rates, suggest a diversion of carbon flux towards EPS being associated with the higher rates of growth.  相似文献   

5.
AIMS: The screening and initial characterization of bacteriocins produced by lactic acid bacteria (LAB) from raw Tenerife goats' cheese with possible application as biopreservatives or ripening accelerators for Tenerife cheese. METHODS AND RESULTS: One hundred and eighty LAB of the genera Lactobacillus (95), Leuconostoc (64) and Lactococcus (21) isolated from raw Tenerife goats' cheese were screened for the production of antimicrobial substances. Lactobacillus plantarum TF711, which had the broadest spectrum of antimicrobial activity, was selected for further characterization. The antimicrobial compound was determined as a proteinaceous substance, as it was sensitive to proteases. The bacteriocin-like substance, which we called plantaricin TF711, was active against the Gram-positive bacteria Bacillus cereus, Clostridium sporogenes and Staphylococcus aureus; and against the Enterobacteriaceae Shigella sonnei and Klebsiella pneumoniae. It was stable to heat and to treatment with surfactants and organic solvents. Highest antimicrobial activity was found between pH 1 and 9. Plantaricin TF711 exhibited primary metabolite kinetics, a bacteriostatic mode of action and a molecular mass of c. 2.5 kDa as determined by tricine SDS-PAGE. CONCLUSIONS: Lact. plantarum TF711 produces a low molecular mass bacteriocin-like compound with a wide spectrum of activity and interesting technological properties (thermostability, good pH stability and stability against surfactants and organic solvents). SIGNIFICANCE AND IMPACT OF THE STUDY: Plantaricin TF711 was found to have potential for use as a biopreservative in the food industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号