首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Decisions of when and where to divide are crucial for cell survival and fate, and for tissue organization and homeostasis. The temporal coordination of mitotic events during cell division is essential to ensure that each daughter cell receives one copy of the genome. The spatial coordination of these events is also crucial because the cytokinetic furrow must be aligned with the axis of chromosome segregation and, in asymmetrically dividing cells, the polarity axis. Several recent papers describe how cell shape and polarity are coordinated with cell division in single cells and tissues and begin to unravel the underlying molecular mechanisms, revealing common principles and molecular players. Here, we discuss how cells regulate the spatial and temporal coordination of cell polarity with cell division.  相似文献   

3.
Cell division is the process by which a cell creates two genetically identical daughter cells. To maintain genomic integrity, a complex and highly regulated sequence of events ensures that the replicated chromosomes are equally partitioned between the daughter cells. For more than 50 years, strategies designed around small-molecule inhibitors have been critical in advancing our understanding of this essential process. Here we introduce a series of questions on the biology of cell division and illustrate how small molecules have been used to design experiments to address these questions. Because of the highly dynamic nature of cell division, the temporal control over protein function that is possible with small molecules has been particularly valuable in dissecting biological mechanisms.  相似文献   

4.
Precise knowledge of spatial and temporal patterns of cell division, including number and orientation of divisions, and knowledge of cell expansion, is central to understanding morphogenesis. Our current knowledge of cell division patterns during plant and animal morphogenesis is largely deduced from analysis of clonal shapes and sizes. But such an analysis can reveal only the number, not the orientation or exact rate, of cell divisions. In this study, we have analyzed growth in real time by monitoring individual cell divisions in the shoot apical meristems (SAMs) of Arabidopsis thaliana. The live imaging technique has led to the development of a spatial and temporal map of cell division patterns. We have integrated cell behavior over time to visualize growth. Our analysis reveals temporal variation in mitotic activity and the cell division is coordinated across clonally distinct layers of cells. Temporal variation in mitotic activity is not correlated to the estimated plastochron length and diurnal rhythms. Cell division rates vary across the SAM surface. Cells in the peripheral zone (PZ) divide at a faster rate than in the central zone (CZ). Cell division rates in the CZ are relatively heterogeneous when compared with PZ cells. We have analyzed the cell behavior associated with flower primordium development starting from a stage at which the future flower comprises four cells in the L1 epidermal layer. Primordium development is a sequential process linked to distinct cellular behavior. Oriented cell divisions, in primordial progenitors and in cells located proximal to them, are associated with initial primordial outgrowth. The oriented cell divisions are followed by a rapid burst of cell expansion and cell division, which transforms a flower primordium into a three-dimensional flower bud. Distinct lack of cell expansion is seen in a narrow band of cells, which forms the boundary region between developing flower bud and the SAM. We discuss these results in the context of SAM morphogenesis.  相似文献   

5.
Synthesis and Structure of Caulobacter crescentus Flagella   总被引:30,自引:27,他引:3  
During the normal cell cycle of Caulobacter crescentus, flagella are released into the culture fluid as swarmer cells differentiate into stalked cells. The released flagellum is composed of a filament, hook, and rod. The molecular weight of purified flagellin (subunit of flagella filament) is 25,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The formation of a flagellum opposite the stalk has been observed by microscope during the differentiation of a stalked cell in preparation for cell division. By pulsing synchronized cultures with (14)C-amino acids it has been demonstrated that the synthesis of flagellin occurs approximately 30 to 40 min before cell division. Flagellin, therefore, is synthesized at a discrete time in the cell cycle and is assembled into flagella at a specific site on the cell. A mutant of C. crescentus that fails to synthesize flagellin has been isolated.  相似文献   

6.
Mechanisms that couple protein turnover to cell cycle progression are critical for coordinating the events of cell duplication and division. Despite the importance of cell cycle-regulated proteolysis, however, technologies to measure this phenomenon are limited, and typically involve monitoring cells that are released back into the cell cycle after synchronization. We describe here the use of laser scanning cytometry (LSC), a technical merger between fluorescence microscopy and flow cytometry, to determine cell cycle-dependent changes in protein stability in unperturbed, asynchronous, cultures of mammalian cells. In this method, the ability of the LSC to accurately measure whole cell fluorescence is employed, together with RNA fluorescence in situ hybridization and immunofluorescence, to relate abundance of a particular RNA and protein in a cell to its point at the cell cycle. Parallel monitoring of RNA and protein levels is used, together with protein synthesis inhibitors, to reveal cell cycle-specific changes in protein turnover. We demonstrate the viability of this method by analyzing the proteolysis of two prominent human oncoproteins, Myc and Cyclin E, and argue that this LSC-based approach offers several practical advantages over traditional cell synchronization methods.  相似文献   

7.
Resting cells of Escherichia coli are able to initiate growth and murein biosynthesis in the presence of beta-lactam antibiotics binding to penicillin-binding proteins (PBPs) 1a and 1b (E. J. de la Rosa, M. A. de Pedro, and D. Vázquez, Proc. Natl. Acad. Sci. USA 82:5632-5635, 1985). Under these conditions, cells elongate normally until they approach the first doubling in mass, the time at which cell lysis starts. Assuming that coupling between DNA replication and cell division both in cells starting growth and in growing cells is essentially similar, triggering of the lytic response in the beta-lactam-treated cells coincides with the termination of the first round of DNA replication. This coincidence suggests that both events are interrelated. We investigated this possibility by studying the initiation of growth in cultures of wild-type strains and in cell division mutants treated with beta-lactams inhibiting PBPs 1a and 1b and with the DNA replication inhibitor nalidixic acid. Addition of nalidixic acid, even late in the first cell cycle, prevented the lytic response of the cells to the blockade of PBPs 1a and 1b. The effect of nalidixic acid is more likely due to its action on DNA replication itself than to its indirect inhibitory effect on cell division or to its ability to induce the SOS system of the cell. These observations favor the idea that the cell wall biosynthetic machinery might be modulated by DNA replication at precise periods during cell growth.  相似文献   

8.
Quantitative electron microscope observations were performed on Escherichia coli B/r after balanced growth with doubling times (tau) of 32 and 60 min. The experimental approach allowed the timing of morphological events during the cell cycle by classifying serially sectioned cells according to length. Visible separation of the nucleoplasm was found to coincide with the time of termination of chromosome replication as predicted by the Cooper-Helmstetter model. The duration of the process of constrictive cell division (10 min) appeared to be independent of the growth rate for tau equals 60 min or less but to increase with increase doubling time in more slowly growing cells. Physiological division, i.e., compartmentalization prior to physical separation of the cells, was only observed to occur in the last minute of the cell cycle. The morphological results indicate that cell elongation continues during the division process in cells with tau equals 32 min, but fails to continue in cells with tau equals 60 min.  相似文献   

9.
 In this paper, we present a systematic approach for obtaining qualitatively and quantitatively correct mathematical models of some biological phenomena with time-lags. Features of our approach are the development of a hierarchy of related models and the estimation of parameter values, along with their non-linear biases and standard deviations, for sets of experimental data. We demonstrate our method of solving parameter estimation problems for neutral delay differential equations by analyzing some models of cell growth that incorporate a time-lag in the cell division phase. We show that these models are more consistent with certain reported data than the classic exponential growth model. Although the exponential growth model provides estimates of some of the growth characteristics, such as the population-doubling time, the time-lag growth models can additionally provide estimates of: (i) the fraction of cells that are dividing, (ii) the rate of commitment of cells to cell division, (iii) the initial distribution of cells in the cell cycle, and (iv) the degree of synchronization of cells in the (initial) cell population. Received: 15 September 1997/Revised version: 1 April 1998  相似文献   

10.
Summary At concentrations that did not affect growth, hydroxyurea and 21-deoxyadenosine inhibited DNA synthesis inChlamydomonas. Evidence that initiation of mitosis is dependent upon completion of DNA replication was provided by the arrest of inhibited cells with undivided nuclei containing undispersed nucleoli. Initiation of cytokinesis is not dependent upon progress of nuclear division since, in arrested cells, cleavage microtubules became deployed in a phycoplast and a cleavage furrow developed fully, until obstructed by the undivided nucleus. Chloroplast constriction and division also continued independently of nuclear division. It is concluded that nuclear division, cytoplasmic cleavage and chloroplast division are in separate sequences of dependent events. This is supported by flexibility of their relative timing in successive divisions, since after the first commitment to divide nuclear division is followed by initiation of cleavage and then chloroplast division, whereas following subsequent commitments these events occur in reverse time order. This flexibility of order indicates changing rates of progress through separate sequences of events.Deposition of wall material was dependent upon the completion of cytokinesis, but this inhibition of wall deposition by incomplete cytokinesis did not extend to other daughters within the same mother cell.These observations are correlated with our earlier data concerning the rate-limiting control points for division and a model for the coordination of division events is presented. The relationships between different plant cell cycles is discussed in view of the findings presented.  相似文献   

11.
Withdrawal of a utilizable nitrogen source during mid G1 of the cell cycle induces gametic differentiation in synchronously grown vegetative cultures of Chlamydomonas reinhardi. Cell division accompanies gametic differentiation in such cultures, and the ability of mid G1 vegetative cells to form gametes is matched by their ability to undergo a round of cell division after nitrogen withdrawal. Synchronously grown cultures require up to 19 hr in nitrogen-free medium to complete a round of division and to form mating-competent cells. Asynchronously grown liquid cultures require less time after nitrogen withdrawal (generally 5–8 hr) to achieve mating competency. In these cultures cell division did not necessarily accompany gametic differentiation since gametic differentiation took place in induced cultures at high cell concentrations which prevented cell division. Maximum mating competency was achieved in less than 2 hr after induction of vegetative cells grown on agar plates. Little cell division was observed during that short induction interval. The relationship between the attainment of mating competency (gametogenesis) and other physiological events resulting from nitrogen withdrawal is discussed.  相似文献   

12.
The application of the exponential growth equation is the standard method employed in the quantitative analyses of mammalian cell proliferation in culture. This method is based on the implicit assumption that, within a cell population under study, all division events give rise to daughter cells that always divide. When a cell population does not adhere to this assumption, use of the exponential growth equation leads to errors in the determination of both population doubling time and cell generation time. We have derived a more general growth equation that defines cell growth in terms of the dividing fraction of daughter cells. This equation can account for population growth kinetics that derive from the generation of both dividing and non-dividing cells. As such, it provides a sensitive method for detecting non-exponential division dynamics. In addition, this equation can be used to determine when it is appropriate to use the standard exponential growth equation for the estimation of doubling time and generation time.  相似文献   

13.
Sloppy size control of the cell division cycle   总被引:1,自引:0,他引:1  
In an asynchronous, exponentially proliferating cell culture there is a great deal of variability among individual cells in size at birth, size at division and generation time (= age at division). To account for this variability we assume that individual cells grow according to some given growth law and that, after reaching a minimum size, they divide with a certain probability (per unit time) which increases with increasing cell size. This model is called sloppy size control because cell division is assumed to be a random process with size-dependent probability. We derive general equations for the distribution of cell size at division, the distribution of generation time, and the correlations between generation times of closely related cells. Our theoretical results are compared in detail with experimental results (obtained by Miyata and coworkers) for cell division in fission yeast, Schizosaccharomyces pombe. The agreement between theory and experiment is superior to that found for any other simple models of the coordination of cell growth and division.  相似文献   

14.
A cell recycle system is studied for two-stage continuous fermentation. Cell recycle around the second stage provides higher cell concentrations than processes without recycle and a longer residence time of the cell, which is necessary for inducible products, especially in recombinant cell fermentation. Residence time distribution of the cell in the fermentor is important for the optimization of inducible products. The residence time distributions are studied for the cases with and without significant cell growth in the second stage. With cell growth in the second stage, three cases are considered. These are the cases of (1) zero residence time for two daughter cells after the cell division, (2) zero residence time of one daughter cell after the cell division and inherited residence time for the other daughter cell from the mother cell after the cell division, and (3) two daughter cells having the residence time of the mother cell after the cell division.  相似文献   

15.
The growth of human cancers is characterised by long and variable cell cycle times that are controlled by stochastic events prior to DNA replication and cell division. Treatment with radiotherapy or chemotherapy induces a complex chain of events involving reversible cell cycle arrest and cell death. In this paper we have developed a mathematical model that has the potential to describe the growth of human tumour cells and their responses to therapy. We have used the model to predict the response of cells to mitotic arrest, and have compared the results to experimental data using a human melanoma cell line exposed to the anticancer drug paclitaxel. Cells were analysed for DNA content at multiple time points by flow cytometry. An excellent correspondence was obtained between predicted and experimental data. We discuss possible extensions to the model to describe the behaviour of cell populations in vivo.  相似文献   

16.
We propose a quantitative method to characterize growth and differentiation dynamics of multipotent cells from time series carboxyfluorescein diacetate, succinimidyl ester (CFDA-SE) division tracking data. The dynamics of cell proliferation and differentiation was measured by combining (CFDA-SE) division tracking with phenotypic analysis. We define division tracking population statistics such as precursor cell frequency, generation time and renewal rate that characterize growth of various phenotypes in a heterogeneous culture system. This method is illustrated by study of the divisional recruitment of cord blood CD34(+) cells by hematopoietic growth factors. The technical issue of assigning the correct generation number to cells was addressed by employing high-resolution division tracking methodology and daily histogram analysis. We also quantified division-tracking artifacts such as CFDA-SE degeneration and cellular auto-fluorescence. Mitotic activation of cord blood CD34(+) cells by cytokines commenced after 2 days of cytokine stimulation. Mean generation number increased linearly thereafter, and it was conclusively shown that CD34(+) cells cycle slower than CD34(-) cells. Generation times for CD34(+) and CD34(-) cells were 24.7 +/- 0.8 h and 15.1 +/- 0.9 h (+/-SD, n = 5), respectively. The 20-fold increase in CD34(+) cell numbers at Day 6 could be attributed to a high CD34(+) cell renewal rate (91% +/- 2% per division). Although cultures were initiated with highly purified CD34(+) cells (approximately 96%), CD34(-) numbers had expanded rapidly by Day 6. This rapid expansion could be explained by their short generation time as well as a small fraction of CD34(+) cells (approximately 5%) that differentiated into CD34(-) cells. Multitype division tracking provides a detailed analysis of multipotent cell differentiation dynamics.  相似文献   

17.
Shoot apical meristems (SAMs) of higher plants harbor stem‐cell niches. The cells of the stem‐cell niche are organized into spatial domains of distinct function and cell behaviors. A coordinated interplay between cell growth dynamics and changes in gene expression is critical to ensure stem‐cell homeostasis and organ differentiation. Exploring the causal relationships between cell growth patterns and gene expression dynamics requires quantitative methods to analyze cell behaviors from time‐lapse imagery. Although technical breakthroughs in live‐imaging methods have revealed spatio‐temporal dynamics of SAM‐cell growth patterns, robust computational methods for cell segmentation and automated tracking of cells have not been developed. Here we present a local graph matching‐based method for automated‐tracking of cells and cell divisions of SAMs of Arabidopsis thaliana. The cells of the SAM are tightly clustered in space which poses a unique challenge in computing spatio‐temporal correspondences of cells. The local graph‐matching principle efficiently exploits the geometric structure and topology of the relative positions of cells in obtaining spatio‐temporal correspondences. The tracker integrates information across multiple slices in which a cell may be properly imaged, thus providing robustness to cell tracking in noisy live‐imaging datasets. By relying on the local geometry and topology, the method is able to track cells in areas of high curvature such as regions of primordial outgrowth. The cell tracker not only computes the correspondences of cells across spatio‐temporal scale, but it also detects cell division events, and identifies daughter cells upon divisions, thus allowing automated estimation of cell lineages from images captured over a period of 72 h. The method presented here should enable quantitative analysis of cell growth patterns and thus facilitating the development of in silico models for SAM growth.  相似文献   

18.
19.
During spermatogenesis, the complex events of the first meiotic prophase and division phase bring about dramatic changes in nuclear organization. One factor frustrating mechanistic dissection of these events is lack of knowledge about precisely what events occur, in what order they occur, and how they may be interrelated by temporal sequence; in other words, a precise timeline is lacking. This temporal ordering problem can be tackled by following expression and localization in mouse spermatocytes of proteins critical to events of the meiotic cell division process. These include ones that are primarily chromosomal and related to pairing and recombination, as well as kinases and substrates that mediate the cell cycle transition. Distinct and protein-specific patterns occur with respect to expression and localization throughout meiotic prophase and division and dramatic relocalization of proteins occurs as spermatocytes enter the meiotic division phase. This information provides a foundation for a meiotic timeline that can be augmented to provide, eventually, a complete catalog of meiotic events and their temporal sequence. Such a framework can clarify mechanisms of normal meiosis as well as mutant phenotypes and aberrations of the meiotic process that lead to aneuploidy.  相似文献   

20.
We describe the spatial and temporal patterns of cell division in the early Xenopus embryo, concentrating on the period between the midblastula transition and the early tailbud stage. Mitotic cells were identified using an antibody recognising phosphorylated histone H3. At least four observations are of interest. First, axial mesodermal cells, including prospective notochord, stop dividing after involution and may not divide thereafter. Second, cell division is more pronounced in the neural plate than in nonneural ectoderm, and the pattern of cell division becomes further refined as neurogenesis proceeds. Third, cells in the cement gland cease proliferation completely as they begin to accumulate pigment. Finally, the precursors of peripheral sensory organs such as the ear and olfactory placode undergo active cell proliferation when they arise from the sensorial layer of the ectoderm. These observations and others should provide a platform to study the relationship between the regulation of developmental processes and the cell cycle during Xenopus embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号