首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B. Duan  M. Zamir   《Journal of biomechanics》1993,26(12):1439-1447
Analytical expressions for the reflection coefficients in pulsatile flow through converging junctions are derived by two independent methods and are used to study the effects of wave reflections on the pressure distribution in a simple vascular loop. A simulated physiological situation is used as an example in which the loop is formed by the combination of a bypass and a bypassed vessel, the relative diameter of the latter being varied in order to simulate a narrowing. The results demonstrate how, in the case of a converging junction, the effects of wave reflections on the pressure distribution in one vessel depend on conditions within the vessel itself as well as in the other. The new reflection coefficients take into account this interdependence of flow in the two vessels forming a converging junction, and are shown to be consistent with reflection coefficients commonly used in diverging junctions.  相似文献   

2.
Chen J  Lu XY  Wang W 《Journal of biomechanics》2006,39(11):1983-1995
Non-Newtonian fluid flow in a stenosed coronary bypass is investigated numerically using the Carreau-Yasuda model for the shear thinning behavior of the blood. End-to-side coronary bypass anastomosis is considered in a simplified model geometry where the host coronary artery has a 75% severity stenosis. Different locations of the bypass graft to the stenosis and different flow rates in the graft and in the host artery are studied. Particular attention is given to the non-Newtonian effect of the blood on the primary and secondary flow patterns in the host coronary artery and the wall shear stress (WSS) distribution there. Interaction between the jet flow from the stenosed artery and the flow from the graft is simulated by solving the three-dimensional Navier-Stokes equation coupled with the non-Newtonian constitutive model. Results for the non-Newtonian flow, the Newtonian flow and the rescaled Newtonian flow are presented. Significant differences in axial velocity profiles, secondary flow streamlines and WSS between the non-Newtonian and Newtonian fluid flows are revealed. However, reasonable agreement between the non-Newtonian and the rescaled Newtonian flows is found. Results from this study support the view that the residual flow in a partially occluded coronary artery interacts with flow in the bypass graft and may have significant hemodynamic effects in the host vessel downstream of the graft. Non-Newtonian property of the blood alters the flow pattern and WSS distribution and is an important factor to be considered in simulating hemodynamic effects of blood flow in arterial bypass grafts.  相似文献   

3.
Mechanics of blood flow in the coronary circulation have in the past been based largely on models in which the detailed architecture of the coronary network is not included because of lack of data: properties of individual vessels do not appear individually in the model but are represented collectively by the elements of a single electric circuit. Recent data from the human heart make it possible, for the first time, to examine the dynamics of flow in the coronary network based on detailed, measured vascular architecture. In particular, admittance values along the full course of the right coronary artery are computed based on actual lengths and diameters of the many thousands of branches which make up the distribution system of this vessel. The results indicate that effects of wave reflections on this flow are far more significant than those generally suspected to occur in coronary blood flow and that they are actually the reverse of the well known wave reflection effects in the aorta.  相似文献   

4.
The placement of a rigid stent within an elastic vessel produces wave reflection sites at the entrance to and exit from the stent. The net haemodynamic effects of these reflections depend critically on the degree of stiffness of the stent and on its length and position within the diseased vessel, variables that have been found to affect the clinical performance of a stent. Here these effects are examined analytically, using a segmented tube model. The results indicate that the presence of the stent within the larger diseased vessel has the effect of producing higher pressure at the vessel entrance than that at exit. This pressure difference, when superimposed on the underlying pressure distribution within the vessel, has the net effect of actually aiding rather than impeding the flow, but the extent of this depends on the length and position of the stent. A short stent placed near the entrance of the diseased vessel may be favoured clinically for producing the least perturbation in the underlying haemodynamics and thus reducing the chance of restenosis, while a long stent placed near the exit may be favoured for producing a positive pressure difference and thus aiding the flow.  相似文献   

5.
The onset of nonpulsatile cardiopulmonary bypass is known to deteriorate microcirculatory perfusion, but it has never been investigated whether this may be prevented by restoration of pulsatility during extracorporeal circulation. We therefore investigated the distinct effects of nonpulsatile and pulsatile flow on microcirculatory perfusion during on-pump cardiac surgery. Patients undergoing coronary artery bypass graft surgery were randomized into a nonpulsatile (n = 17) or pulsatile (n = 16) cardiopulmonary bypass group. Sublingual mucosal microvascular perfusion was measured at distinct perioperative time intervals using sidestream dark field imaging, and quantified as the level of perfused small vessel density and microvascular flow index (vessel diameter < 20 μm). Microcirculation measurements were paralleled by hemodynamic and free hemoglobin analyses. The pulse wave during pulsatile bypass estimated 58 ± 17% of the baseline blood pressure waveform. The observed reduction in perfused vessel density during aorta cross-clamping was only restored in the pulsatile flow group and increased from 15.5 ± 2.4 to 20.3 ± 3.7 mm/mm(2) upon intensive care admission (P < 0.01). The median postoperative microvascular flow index was higher in the pulsatile group [2.6 (2.5-2.9)] than in the nonpulsatile group [2.1 (1.7-2.5); P = 0.001]. Pulsatile flow was not associated with augmentation of free hemoglobin production and was paralleled by improved oxygen consumption from 70 ± 14 to 82 ± 16 ml·min(-1)·m(-2) (P = 0.01) at the end of aortic cross-clamping. In conclusion, pulsatile cardiopulmonary bypass preserves microcirculatory perfusion throughout the early postoperative period, irrespective of systemic hemodynamics. This observation is paralleled by an increase in oxygen consumption during pulsatile flow, which may hint toward decreased microcirculatory heterogeneity during extracorporeal circulation and preservation of microcirculatory perfusion throughout the perioperative period.  相似文献   

6.

Percutaneous coronary intervention (PCI) has become the primary treatment for patients with coronary heart disease because of its minimally invasive nature and high efficiency. Anatomical studies have shown that most coronary vessels gradually shrink, and the vessels gradually become thinner from the proximal to the distal end. In this paper, the effects of different stent expansion methods on the mechanical and hemodynamic behaviors of coronary vessels and stents were studied. To perform a structural-mechanical analysis of stent implantation, the coronary vessels with branching vessels and the coronary vessels with large bending curvature are selected. The two characteristic structures are implanted in equal diameter expansion mode and conical expansion mode, and the stress and mechanical behaviors of the coronary vessels and stents are analyzed. The results of the structural-mechanical analysis showed that the mechanical behaviors and fatigue performance of the cobalt-chromium alloy stent were good, and the different expansion modes of the stent had little effect on the fatigue performance of the stent. However, the equal diameter expansion mode increased distal coronary artery stress and the risk of vascular injury. The computational fluid dynamics analysis results showed that different stent expansion methods had varied effects on coronary vessel hemodynamics and that the wall shear stress distribution of conical stent expansion is more uniform compared with equal diameter expansion. Additionally, the vortex phenomenon is not apparent, the blood flow velocity is slightly increased, the hydrodynamic environment is more reasonable, and the risk of coronary artery injury is reduced.

  相似文献   

7.
Robotic assistance has enabled coronary artery bypass surgery to be performed safely in a completely endoscopic fashion, but diffusely diseased target vessels may pose a technical challenge. We present a case in which coronary endarterectomy was performed on the left anterior descending coronary artery during a two-vessel totally endoscopic coronary artery bypass procedure. A 52-year-old woman presented with intermittent substernal pain. Preoperative studies showed diffuse disease in the left coronary artery system. Bilateral internal mammary arteries were harvested robotically using a skeletonized technique in a completely endoscopic fashion. Cardiopulmonary bypass was achieved via peripheral cannulation, and the heart was arrested with intermittent cold antegrade hyperkalemic blood cardioplegia delivered via an ascending aortic occlusion balloon catheter. The first obtuse marginal anastomosis was performed. The left anterior descending coronary artery was diffusely diseased and heavily calcified. An end-to-side anastomosis was attempted to the right internal mammary artery with unsatisfactory results. A localized coronary endarterectomy was performed, and an extended anastomosis was completed using the right internal mammary artery. The patient recovered uneventfully and was discharged home on postoperative day 6. Diffuse coronary artery disease was once thought to be a prohibitive challenge for minimally invasive coronary bypass procedures. This case demonstrates that local coronary endarterectomy is feasible and safe in robotic totally endoscopic coronary artery bypass surgery.  相似文献   

8.
It is the ultimate goal of tissue engineering: an autologous tissue engineered vascular graft (TEVG) that is immunologically compatible, nonthrombogenic, and can grow and remodel. Currently, native vessels are the preferred vascular conduit for procedures such as coronary artery bypass (CABG) or peripheral bypass surgery. However, in many cases these are damaged, have already been harvested, or are simply unusable. The use of synthetic conduits is severely limited in smaller diameter vessels due to increased incidence of thrombosis, infection, and graft failure. Current research has therefore energetically pursued the development of a TEVG that can incorporate into a patient's circulatory system, mimic the vasoreactivity and biomechanics of the native vasculature, and maintain long-term patency.  相似文献   

9.

Background

Coronary artery bypass grafting surgery is an effective treatment modality for patients with severe coronary artery disease. The conduits used during the surgery include both the arterial and venous conduits. Long- term graft patency rate for the internal mammary arterial graft is superior, but the same is not true for the saphenous vein grafts. At 10 years, more than 50% of the vein grafts would have occluded and many of them are diseased. Why do the saphenous vein grafts fail the test of time? Many causes have been proposed for saphenous graft failure. Some are non-modifiable and the rest are modifiable. Non-modifiable causes include different histological structure of the vein compared to artery, size disparity between coronary artery and saphenous vein. However, researches are more interested in the modifiable causes, such as graft flow dynamics and wall shear stress distribution at the anastomotic sites. Formation of intimal hyperplasia at the anastomotic junction has been implicated as the root cause of long- term graft failure.Many researchers have analyzed the complex flow patterns in the distal sapheno-coronary anastomotic region, using various simulated model in an attempt to explain the site of preferential intimal hyperplasia based on the flow disturbances and differential wall stress distribution. In this paper, the geometrical bypass models (aorto-left coronary bypass graft model and aorto-right coronary bypass graft model) are based on real-life situations. In our models, the dimensions of the aorta, saphenous vein and the coronary artery simulate the actual dimensions at surgery. Both the proximal and distal anastomoses are considered at the same time, and we also take into the consideration the cross-sectional shape change of the venous conduit from circular to elliptical. Contrary to previous works, we have carried out computational fluid dynamics (CFD) study in the entire aorta-graft-perfused artery domain. The results reported here focus on (i) the complex flow patterns both at the proximal and distal anastomotic sites, and (ii) the wall shear stress distribution, which is an important factor that contributes to graft patency.

Methods

The three-dimensional coronary bypass models of the aorto-right coronary bypass and the aorto-left coronary bypass systems are constructed using computational fluid-dynamics software (Fluent 6.0.1). To have a better understanding of the flow dynamics at specific time instants of the cardiac cycle, quasi-steady flow simulations are performed, using a finite-volume approach. The data input to the models are the physiological measurements of flow-rates at (i) the aortic entrance, (ii) the ascending aorta, (iii) the left coronary artery, and (iv) the right coronary artery.

Results

The flow field and the wall shear stress are calculated throughout the cycle, but reported in this paper at two different instants of the cardiac cycle, one at the onset of ejection and the other during mid-diastole for both the right and left aorto-coronary bypass graft models. Plots of velocity-vector and the wall shear stress distributions are displayed in the aorto-graft-coronary arterial flow-field domain. We have shown (i) how the blocked coronary artery is being perfused in systole and diastole, (ii) the flow patterns at the two anastomotic junctions, proximal and distal anastomotic sites, and (iii) the shear stress distributions and their associations with arterial disease.

Conclusion

The computed results have revealed that (i) maximum perfusion of the occluded artery occurs during mid-diastole, and (ii) the maximum wall shear-stress variation is observed around the distal anastomotic region. These results can enable the clinicians to have a better understanding of vein graft disease, and hopefully we can offer a solution to alleviate or delay the occurrence of vein graft disease.
  相似文献   

10.
Tissue engineering of blood vessel   总被引:4,自引:0,他引:4  
Vascular grafts are in large demand for coronary and peripheral bypass surgeries. Although synthetic grafts have been developed, replacement of vessels with purely synthetic polymeric conduits often leads to the failure of such graft, especially in the grafts less than 6 mm in diameter or in the areas of low blood flow, mainly due to the early formation of thrombosis. Moreover, the commonly used materials lack growth potential, and long-term results have revealed several material-related failures, such as stenosis, thromboembolization, calcium deposition and infection. Tissue engineering has become a promising approach for generating a bio-compatible vessel graft with growth potential. Since the first success of constructing blood vessels with collagen and cultured vascular cells by Weinberg and Bell, there has been considerable progress in the area of vessel engineering. To date, tissue- engineered blood vessels (TEBVs) could be successfully constructed in vitro, and be used to repair the vascular defects in animal models. This review describes the major progress in the field, including the seeding cell sources, the biodegradable scaffolds, the construction technologies, as well as the encouraging achievements in clinical applications. The remaining challenges are also discussed.  相似文献   

11.
Coronary collateral vessels serve as a natural protective mechanism to provide coronary flow to ischemic myocardium secondary to critical coronary artery stenosis. The innate collateral circulation of the normal human heart is typically minimal and considerable variability occurs in extent of collateralization in coronary artery disease patients. A well-developed collateral circulation has been documented to exert protective effects upon myocardial perfusion, contractile function, infarct size, and electrocardiographic abnormalities. Thus therapeutic augmentation of collateral vessel development and/or functional adaptations in collateral and collateral-dependent arteries to reduce resistance into the ischemic myocardium represent a desirable goal in the management of coronary artery disease. Tremendous evidence has provided documentation for the therapeutic benefits of exercise training programs in patients with coronary artery disease (and collateralization); mechanisms that underlie these benefits are numerous and multifaceted, and currently under investigation in multiple laboratories worldwide. The role of enhanced collateralization as a major beneficial contributor has not been fully resolved. This topical review highlights literature that examines the effects of exercise training on collateralization in the diseased heart, as well as effects of exercise training on vascular endothelial and smooth muscle control of regional coronary tone in the collateralized heart. Future directions for research in this area involve further delineation of cellular/molecular mechanisms involved in effects of exercise training on collateralized myocardium, as well as development of novel therapies based on emerging concepts regarding exercise training and coronary artery disease.  相似文献   

12.
Multiple investigations show that multidetector spiral computed tomography (MSCT) bypass grafting becomes an alternative to invasive coronary angiography in detecting coronary graft stenoses and occlusions. The investigation retrospectively estimated the patency of aortocoronary and mammary coronary artery anastomoses by MSCT bypass grafting. Examinations were made in 85 (326 anastomoses) patients who had undergone aortocoronary and mammary coronary artery bypass surgery and had MSCT bypass grafting within 3 years after the surgery. In the first year following the surgery, 18 patients with graft stenotic changes, as evidenced by MSCT, underwent intervention coronary angiography, the sensitivity and specificity of which was 100%. The results of clinical and instrumental examinations were also compared with graft incompetence, as shown on MSCT that revealed that MSCT bypass grafting was the only noninvasive technique to evaluate early coronary graft closure both in the absence of clear signs of myocardial ischemia according to the data of exercise tests and in the presence of recurrent angina pectoris.  相似文献   

13.
We present an experimental and computational investigation of time-varying flow in an idealized fully occluded 45 degrees distal end-to-side anastomosis. Two geometric configurations are assessed, one where the centerlines of host and bypass vessels lie within a plane, and one where the bypass vessel is deformed out of the plane of symmetry, respectively, termed planar and non-planar. Flow experiments were conducted by magnetic resonance imaging in rigid wall models and computations were performed using a high order spectral/hp algorithm. Results indicate a significant change in the spatial distribution of wall shear stress and a reduction of the time-averaged peak wall shear stress magnitude by 10% in the non-planar model as compared to the planar configuration. In the planar geometry the stagnation point follows a straight-line path along the host artery bed with a path length of 0.8 diameters. By contrast in the non-planar case the stagnation point oscillates about a center that is located off the symmetry plane intersection with the host artery bed wall, and follows a parabolic path with a 0.7 diameter longitudinal and 0.5 diameter transverse excursion. A definition of the oscillatory shear index (OSI) is introduced that varies between 0 and 0.5 and that accounts for a continuous range of wall shear stress vector angles. In both models, regions of elevated oscillatory shear were spatially associated with regions of separated or oscillating stagnation point flow. The mean oscillatory shear magnitude (considering sites where OSI>0.1) in the non-planar geometry was reduced by 22% as compared to the planar configuration. These changes in the dynamic behavior of the stagnation point and the oscillatory shear distribution introduced by out-of-plane graft curvature may influence the localization of vessel wall sites exposed to physiologically unfavorable flow conditions.  相似文献   

14.
Studies have demonstrated that antagonists of platelet activity, including aspirin and clopidogrel, reduce the risk of major adverse events in patients with acute coronary syndromes. Although antiplatelet agents also convey an increased risk of bleeding, particularly in patients proceeding to coronary artery bypass graft surgery, in most cases, the benefits of early initiation of antiplatelet therapy outweigh the risks. The purpose of this review is to distinguish perceived and actual risk versus the benefit associated with early antiplatelet therapy to help clinicians make informed decisions on using these agents in an acute setting where patients may require coronary artery bypass grafting.  相似文献   

15.
The pressure-diameter relation (PDR) and the wall strain of coronary blood vessels have important implications for coronary blood flow and arthrosclerosis, respectively. Previous studies have shown that these mechanical quantities are significantly affected by the axial stretch of the vessels. The objective of this study was to measure the physiological axial stretch in the coronary vasculature; i.e., from left anterior descending (LAD) artery tree to coronary sinus vein and to determine its effect on the PDR and hence wall stiffness. Silicone elastomer was perfused through the LAD artery and coronary sinus trees to cast the vessels at the physiologic pressure. The results show that the physiological axial stretch exists for orders 4 to 11 (> 24 μm in diameter) arteries and orders -4 to -12 (>38 μm in diameter) veins but vanishes for the smaller vessels. Statistically, the axial stretch is higher for larger vessels and is higher for arteries than veins. The axial stretch λ(z) shows a linear variation with the order number (n) as: λ(z) = 0.062n + 0.75 (R(2) = 0.99) for artery and λ(z) = -0.029n + 0.89 (R(2) = 0.99) for vein. The mechanical analysis shows that the axial stretch significantly affects the PDR of the larger vessels. The circumferential stretch/strain was found to be significantly higher for the epicardial arteries (orders 9-11), which are free of myocardium constraint, than the intramyocardial arteries (orders 4-8). These findings have fundamental implications for coronary blood vessel mechanics.  相似文献   

16.
A hemodynamic analysis of coronary blood flow must be based on the measured branching pattern and vascular geometry of the coronary vasculature. We recently developed a computer reconstruction of the entire coronary arterial tree of the porcine heart based on previously measured morphometric data. In the present study, we carried out an analysis of blood flow distribution through a network of millions of vessels that includes the entire coronary arterial tree down to the first capillary branch. The pressure and flow are computed throughout the coronary arterial tree based on conservation of mass and momentum and appropriate pressure boundary conditions. We found a power law relationship between the diameter and flow of each vessel branch. The exponent is approximately 2.2, which deviates from Murray's prediction of 3.0. Furthermore, we found the total arterial equivalent resistance to be 0.93, 0.77, and 1.28 mmHg.ml(-1).s(-1).g(-1) for the right coronary artery, left anterior descending coronary artery, and left circumflex artery, respectively. The significance of the present study is that it yields a predictive model that incorporates some of the factors controlling coronary blood flow. The model of normal hearts will serve as a physiological reference state. Pathological states can then be studied in relation to changes in model parameters that alter coronary perfusion.  相似文献   

17.
The branching pattern of the coronary arteries and veins is asymmetric, i.e., many small vessels branch off of a large trunk such that the two daughter vessels at a bifurcation are of unequal diameters and lengths. One important implication of the geometric vascular asymmetry is the dispersion of blood flow at a bifurcation, which leads to large spatial heterogeneity of myocardial blood flow. To document the asymmetric branching pattern of the coronary vessels, we computed an asymmetry ratio for the diameters and lengths of all vessels, defined as the ratio of the daughter diameters and lengths, respectively. Previous data from silicone elastomer cast of the entire coronary vasculature including arteries, arterioles, venules, and veins were analyzed. Data on smaller vessels were obtained from histological specimens by optical sectioning, whereas data on larger vessels were obtained from vascular casts. Asymmetry ratios for vascular areas, volumes, resistances, and flows of the various daughter vessels were computed from the asymmetry ratios of diameters and lengths for every order of mother vessel. The results show that the largest orders of arterial and venous vessels are most asymmetric and the degree of asymmetry decreases toward the smaller vessels. Furthermore, the diameter asymmetry at a bifurcation is significantly larger for the coronary veins (1.7-6.8 for sinus veins) than the corresponding arteries (1.5-5.8 for left anterior descending coronary artery) for orders 2-10, respectively. The reported diameter asymmetry at a bifurcation leads to significant heterogeneity of blood flow at a bifurcation. Hence, the present data quantify the dispersion of blood flow at a bifurcation and are essential for understanding flow heterogeneity in the coronary circulation.  相似文献   

18.
目的:对比选择性冠状静脉动脉化(SCVBG)搭桥治疗弥漫性右冠状动脉狭窄病变中选择乳内动脉和大隐静脉作为桥血管的治疗效果。方法:选择2008年10月到2014年10月在我院行SCVBG搭桥的84例患者资料,其中选择大隐静脉作为桥血管进行冠状静脉动脉化搭桥患者46例(大隐静脉桥组),选择乳内动脉作为桥血管进行冠状静脉动脉化搭桥患者38例(乳内动脉桥组)。随访记录两组患者的生存情况、近期复查超声心动图、冠状动脉CTA及心绞痛复发率。结果:乳内动脉桥组患者总生存率(100%)明显高于大隐静脉桥组(82.6%)(P0.05)。乳内动脉桥组患者桥血管和心中静脉通畅率(100%)明显大于大隐静脉桥组(54.35%)(P0.05)。两组患者左心室射血分数(LVEF)较治疗前明显增加,左心室舒张期末内径(LVEDD)较治疗前明显减小(P0.05)。治疗后,乳内动脉桥组患者心绞痛复发率明显小于大隐静脉桥组(P0.05)。结论:SCVBG搭桥治疗弥漫性右冠状动脉狭窄病变中,选择乳内动脉桥效果优于大隐静脉桥,能明显提高桥血管和心中静脉通畅率,降低心绞痛复发率。  相似文献   

19.
The saphenous vein (SV) is the most commonly used conduit for revascularization in patients undergoing coronary artery bypass surgery (CABG). The patency rate of this vessel is inferior to the internal thoracic artery (ITA). In the majority of CABG procedures the ITA is removed with its outer pedicle intact whereas the (human) SV (hSV) is harvested with pedicle removed. The vasa vasorum, a microvessel network providing the adventitia and media with oxygen and nutrients, is more pronounced and penetrates deeper towards the lumen in veins than in arteries. When prepared in conventional CABG the vascular trauma caused when removing the hSV pedicle damages the vasa vasorum, a situation affecting transmural flow potentially impacting on graft performance. In patients, where the hSV is harvested with pedicle intact, the vasa vasorum is preserved and transmural blood flow restored at graft insertion and completion of CABG. By maintaining blood supply to the hSV wall, apart from oxygen and nutrients, the vasa vasorum may also transport factors potentially beneficial to graft performance. Studies, using either corrosion casts or India ink, have shown the course of vasa vasorum in animal SV as well as in hSV. In addition, there is some evidence that vasa vasorum of hSV terminate in the vessel lumen based on ex vivo perfusion, histological and ultrastructural studies. This review describes the preparation of the hSV as a bypass conduit in CABG and its performance compared with the ITA as well as how and why its patency might be improved by harvesting with minimal trauma in a way that preserves an intact vasa vasorum.  相似文献   

20.
Arterial T and Y grafts.   总被引:1,自引:0,他引:1  
Presented is the use of an autogenous arterial T graft for the salvage of a thrombosed arterial end-to-side anastomosis. The T-graft concept also offers the possibility of replacing a segment of artery in patients with arterial vessel wall defects, stenosis, obliteration, or disease during free latissimus dorsi or scapular flap transfer. The arterial T graft is harvested from the axilla and consists of segments of the subscapular, circumflex scapular, and thoracodorsal arteries. The large diameter of these vessels offers a good match with the arteries of the lower leg and forearm. The arterial Y graft consists of the same arteries and is used as an interpositional graft to revascularize two distal vessels from one proximal vessel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号