首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T-box genes are conserved in all animal species. We have identified two members of the T-box gene family from the zebrafish, Danio rerio. Zf-tbr1 and zf-tbx3 share high amino acid identity with human, murine, chick and Xenopus orthologs and are expressed in specific regions during zebrafish development.  相似文献   

2.
Conserved and divergent expression of T-box genes Tbx2-Tbx5 in Xenopus   总被引:4,自引:0,他引:4  
We report here the identification of four members of T-box family genes, Xltbx2-Xltbx5, in Xenopus. Two of them are probable pseudovariant genes of XTbx5 and ET, a putative Xenopus ortholog of Tbx3. We compared their expression patterns in both embryos and limbs. In embryos, expression of Xltbx2 and Xltbx3 showed novel diversities, such as Xltbx2 in the neural crest cells and Xltbx3 in the ventral spinal cord, together with mutual similarities in the following regions: dorsal retina, proctoderm, lateral line organ, cement gland and cranial ganglia. The patterns in limbs were highly conserved with mouse and chick orthologs, including the limb-type specific expression of Xltbx4 and Xltbx5. In addition, RT-PCR analysis showed that they are expressed weakly even in adult limbs as previously reported in the newt.  相似文献   

3.
Transposons comprise a major component of eukaryotic genomes, yet it remains controversial whether they are merely genetic parasites or instead significant contributors to organismal function and evolution. In plants, thousands of DNA transposons were recently shown to contain duplicated cellular gene fragments, a process termed transduplication. Although transduplication is a potentially rich source of novel coding sequences, virtually all appear to be pseudogenes in rice. Here we report the results of a genome-wide survey of transduplication in Mutator-like elements (MULEs) in Arabidopsis thaliana, which shows that the phenomenon is generally similar to rice transduplication, with one important exception: KAONASHI (KI). A family of more than 97 potentially functional genes and apparent pseudogenes, evidently derived at least 15 MYA from a cellular small ubiquitin-like modifier-specific protease gene, KI is predominantly located in potentially autonomous non-terminal inverted repeat MULEs and has evolved under purifying selection to maintain a conserved peptidase domain. Similar to the associated transposase gene but unlike cellular genes, KI is targeted by small RNAs and silenced in most tissues but has elevated expression in pollen. In an Arabidopsis double mutant deficient in histone and DNA methylation with elevated KI expression compared to wild type, at least one KI-MULE is mobile. The existence of KI demonstrates that transduplicated genes can retain protein-coding capacity and evolve novel functions. However, in this case, our evidence suggests that the function of KI may be selfish rather than cellular.  相似文献   

4.
5.
Piwi-interacting RNAs (piRNAs) are known to regulate transposon activity in germ cells of several animal models that propagate sexually. However, the role of piRNAs during asexual reproduction remains almost unknown. Aphids that can alternate sexual and asexual reproduction cycles in response to seasonal changes of photoperiod provide a unique opportunity to study piRNAs and the piRNA pathway in both reproductive modes. Taking advantage of the recently sequenced genome of the pea aphid Acyrthosiphon pisum, we found an unusually large lineage-specific expansion of genes encoding the Piwi sub-clade of Argonaute proteins. In situ hybridisation showed differential expressions between the duplicated piwi copies: while Api-piwi2 and Api-piwi6 are "specialised" in germ cells their most closely related copy, respectively Api-piwi5 and Api-piwi3, are expressed in the somatic cells. The differential expression was also identified in duplicated ago3: Api-ago3a in germ cells and Api-ago3b in somatic cells. Moreover, analyses of expression profiles of the expanded piwi and ago3 genes by semi-quantitative RT-PCR showed that expressions varied according to the reproductive types. These specific expression patterns suggest that expanded aphid piwi and ago3 genes have distinct roles in asexual and sexual reproduction.  相似文献   

6.
7.
T-box genes are defined by the presence of a conserved sequence, the so-called T-box; this codes for the T-domain, which is involved in DNA-binding and protein dimerisation. Members of this gene family have been found in all metazoans, from diploblasts to humans, and mutations in T-box gene family members in humans have been linked to several congenital disorders. Sequencing of the complete genomes of a range of invertebrate and vertebrate species has allowed the classification of individual T-box genes into five subfamilies: Brachyury, T-brain1, Tbx1, Tbx2 and Tbx6. This review will largely focus on T-box genes identified in organisms whose genomes have been fully sequenced, emphasising how comparative studies of the T-box gene family will help to reveal the roles of these genes during development and in the adult.  相似文献   

8.
9.
10.
11.
12.
p53 family genes: structural comparison, expression and mutation   总被引:12,自引:0,他引:12  
  相似文献   

13.
14.
15.
Xue Y  Kuok C  Xiao A  Zhu Z  Lin S  Zhang B 《遗传学报》2010,37(10):685-693
Mical(molecule interacting with CasL)represent a conserved family of cytosolic multidomain proteins that has been shown to be associated with a variety of cellular processes,including axon guidance,cell movement,cell-cell junction formation,vesicle trafficking and cancer cell metastasis.However,the expression and function of these genes during embryonic development have not been comprehensively characterized,especially in vertebrate species,although some limited in vivo studies have been carried out in neural and musculature systems of Drosophila and in neural systems of vertebrates.So far,no mica/family homologs have been reported in zebrafish,an ideal vertebrate model for the study of developmental processes.Here we report eight homologs of m/ca/family genes in zebrafish and their expression profiles during embryonic development.Consistent with the findings in Drosophila and mammals,most zebrafish mical family genes display expression in neural and musculature systems.In addition,five mica/homologs are detected in heart,and one,micall2a,in blood vessels.Our data established an important basis for further functional studies of mica/family genes in zebrafish,and suggest a possible role for mica/genes in cardiovascular development.  相似文献   

16.
17.
18.
19.
20.

Key message

Here we uncover the major evolutionary events shaping the evolution of the GID1 family of gibberellin receptors in land plants at the sequence, structure and gene expression levels.

Abstract

Gibberellic acid (gibberellin, GA) controls key developmental processes in the life cycle of land plants. By interacting with the GIBBERELLIN INSENSITIVE DWARF1 (GID1) receptor, GA regulates the expression of a wide range of genes through different pathways. Here we report the systematic identification and classification of GID1s in 54 plants genomes, encompassing from bryophytes and lycophytes, to several monocots and eudicots. We investigated the evolutionary relationship of GID1s using a comparative genomics framework and found strong support for a previously proposed phylogenetic classification of this family in land plants. We identified lineage-specific expansions of particular subfamilies (i.e. GID1ac and GID1b) in different eudicot lineages (e.g. GID1b in legumes). Further, we found both, shared and divergent structural features between GID1ac and GID1b subgroups in eudicots that provide mechanistic insights on their functions. Gene expression data from several species show that at least one GID1 gene is expressed in every sampled tissue, with a strong bias of GID1b expression towards underground tissues and dry legume seeds (which typically have low GA levels). Taken together, our results indicate that GID1ac retained canonical GA signaling roles, whereas GID1b specialized in conditions of low GA concentrations. We propose that this functional specialization occurred initially at the gene expression level and was later fine-tuned by mutations that conferred greater GA affinity to GID1b, including a Phe residue in the GA-binding pocket. Finally, we discuss the importance of our findings to understand the diversification of GA perception mechanisms in land plants.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号