首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipoxygenase-dependent degradation of storage lipids   总被引:17,自引:0,他引:17  
Oilseed germination is characterized by the mobilization of storage lipids as a carbon source for the germinating seedling. In spite of the importance of lipid mobilization, its mechanism is only partially understood. Recent data suggest that a novel degradation mechanism is initiated by a 13-lipoxygenase during germination, using esterified fatty acids specifically as substrates. This 13-lipoxygenase reaction leads to a transient accumulation of ester lipid hydroperoxides in the storage lipids, and the corresponding oxygenated fatty acid moieties are preferentially removed by specific lipases. The free hydroperoxy fatty acids are subsequently reduced to their hydroxy derivatives, which might in turn undergo beta-oxidation.  相似文献   

2.
Until now, there has been no conclusive demonstration of any in vivo oleosin degradation at the early stages of oil body mobilization. The present work on sunflower (Helianthus annuus L.) has demonstrated limited oleosin degradation during seed germination. Seedling cotyledon homogenization in Tris-urea buffer, followed by SDS-PAGE, revealed three oleosins (16, 17.5 and 20 kDa). Incubation of oil bodies with total soluble protein from 4-day-old seedlings resulted in oleosin degradation. In vitro and in vivo degradation of the 17.5-kDa oleosin was faster than the other two, indicating its greater susceptibility to proteolysis. Oleosin degradation by the total soluble protein resulted in a transient 14.5-kDa polypeptide, followed by an 11-kDa protease-protected fragment, which appeared post-germinatively and accumulated corresponding to increased rate of lipid mobilization. A 65-kDa protease, active at pH 7.5-9.5, was zymographically detected in the total soluble protein. Its activity increased along with in vivo accumulation of the protease-protected fragment during seed germination and accompanying lipid mobilization. Protease-treated oil bodies were more susceptible to maize lipase action. Differential proteolytic sensitivity of different oleosins in the oil body membranes could be a determinant of oil body longevity during seed germination.  相似文献   

3.
Seeds of rape (Brassica napus L.) were germinated at various NaCl concentrations up to 200 mM. Germinating levels, seedling growth, triacylglycerol mobilization and lipase activity were investigated. High salt concentrations resulted in retardation of seed germination. Seedling growth as measured by radicle length was severely reduced by NaCl doses higher than 50 mM. Moreover, the mobilization of storage oil in control rapeseed seedlings, started about 24 h after imbibition. As for germination and growth, elevated salt concentrations are found to delay triacylglycerol degradation. Experiments using triolein as substrate indicated clearly that lipase activity was inhibited by salt treatment.  相似文献   

4.
All eukaryotes including the yeast contain a lipid storage compartment which is named lipid particle, lipid droplet or oil body. Lipids accumulating in this subcellular fraction serve as a depot of energy and building blocks for membrane lipid synthesis. In the yeast, the major storage lipids are triacylglycerols (TGs) and steryl esters (SEs). An important step in the life cycle of these non-polar lipids is their mobilization from their site of storage and channeling of their degradation components to the appropriate metabolic pathways. A key step in this mobilization process is hydrolysis of TG and SE which is accomplished by lipases and hydrolases. In this review, we describe our recent knowledge of TG lipases from the yeast based on biochemical, molecular biological and cell biological information. We report about recent findings addressing the versatile role of TG lipases in lipid metabolism, and discuss non-polar lipid homeostasis and its newly discovered links to various cell biological processes in the yeast.  相似文献   

5.
Caleosin is a Ca(2+)-binding oil-body surface protein. To assess its role in the degradation of oil-bodies, two independent insertion mutants lacking caleosin were studied. Both mutants demonstrated significant delay of breakdown of the 20:1 storage lipid at 48 and 60 h of germination. Additionally, although germination rates for seeds were not affected by the mutations, mutant seedlings grew more slowly than wild type when measured at 48 h of germination, a defect that was corrected with continued growth for 72 and 96 h in the light. After 48 h of germination, wild-type central vacuoles had smooth contours and demonstrated internalization of oil bodies and of membrane containing alpha- and delta-tonoplast intrinsic proteins (TIPs), markers for protein storage vacuoles. In contrast, mutant central vacuoles had distorted limiting membranes displaying domains with clumps of the two TIPs, and they contained fewer oil bodies. Thus, during germination caleosin plays a role in the degradation of storage lipid in oil bodies. Its role involves both the normal modification of storage vacuole membrane and the interaction of oil bodies with vacuoles. The results indicate that interaction of oil bodies with vacuoles is one mechanism that contributes to the degradation of storage lipid.  相似文献   

6.
Based on sequence homology to mammalian acid lipases, yeast reading frame YKL140w was predicted to encode a triacylglycerol (TAG) lipase in yeast and was hence named as TGL1, triglyceride lipase 1. A deletion of TGL1, however, resulted in an increase of the cellular steryl ester content. Fluorescently labeled lipid analogs that become covalently linked to the enzyme active site upon catalysis were used to discriminate between the lipase and esterase activities of Tgl1p. Tgl1p preferred single-chain esterase inhibitors over lipase inhibitors in vitro. Under assay conditions optimal for acid lipases, Tgl1p exhibited steryl esterase activity only and lacked any triglyceride lipase activity. In contrast, at pH 7.4, Tgl1p also exhibited TAG lipase activity; however, steryl ester hydrolase activity was still predominant. Tgl1p localized exclusively to lipid droplets which are the intracellular storage compartment of steryl esters and triacylglycerols in the yeast S. cerevisiae. In a tgl1 deletion mutant, the mobilization of steryl esters in vivo was delayed, but not abolished, suggesting the existence of additional enzymes involved in steryl ester mobilization.  相似文献   

7.
Lipid-protein particles ranging from 20 to 250 nm in diameter have been isolated from the cytosol of carnation petals by flotation centrifugation and also by ultrafiltration. The cytosolic lipid-protein particles resemble oil bodies, lipid-protein particles found in oil-bearing seeds, in that they contain triacylglycerol, are circumscribed by phospholipid that is not organized in a bilayer, appear to be derived from membranes and can be isolated by flotation. However, the cytosolic particles are distinguishable from oil bodies in that triacylglycerol is not the dominant lipid. Indeed, they contain a spectrum of lipids in addition to phospholipids and triacylglycerol including free fatty acids, sterol and wax esters, phosphatidic acid and diacylglycerol. These same lipids are present in corresponding microsomal membranes as well, but in much smaller proportions relative to phospholipid. The lipid-protein particles from carnation petals contain a 17-kDa protein that is of similar size to oil body oleosin, but does not cross-react with anti-oleosin antibodies. The data indicate that these cytosolic particles are structurally and chemically similar to oil bodies and are consistent with the notion that their genesis may be a means of removing destabilizing lipids from membrane bilayers.  相似文献   

8.
Seven day old seedlings of Echinochloa crus-galli var. oryzicola (Vasing) had a higher total lipid content when germinated under N2 than in air, although ungerminated seeds contained more lipid than either seedling. The triacylglycerol pool was not depleted under anaerobiosis as it was in air and only air-grown seedlings showed a net increase in free fatty acids and polar lipids. Concentrations of most of the individual acids of the total fatty acid profile declined during germination in air and in the free acid and polar lipid fractions of these seedlings the relative proportion of polyunsaturated fatty acids increased. Compared to air-grown seedlings, ungerminated seeds and N2-grown seedlings had a similar qualitative and quantitative lipid composition. Our results show that mobilization of storage lipids was apparently severely inhibited under anoxia. The importance of lipid metabolism to the germination and growth of Echinochloa during anoxia is discussed in terms of maintaining membrane integrity and serving (indirectly) to reoxidize pyridine nucleotides.  相似文献   

9.
Microalgae accumulate triacylglycerol (TAG) during nutrient deprivation and break it down after nutrient resupply, and these processes involve dramatic shifts in cellular carbon allocation. Due to the importance of algae in the global carbon cycle, and the potential of algal lipids as feedstock for chemical and fuel production, these processes are of both ecophysiological and biotechnological importance. However, the metabolism of TAG is not well understood, particularly the contributions of fatty acids (FAs) from different membrane lipids to TAG accumulation and the fate of TAG FAs during degradation. Here, we used isotopic labeling time course experiments on Chlamydomonas reinhardtii to track FA synthesis and transfer between lipid pools during nitrogen (N)-deprivation and resupply. When cells were labeled before N-deprivation, total levels of label in cellular FAs were unchanged during subsequent N-deprivation and later resupply, despite large fluxes into and out of TAG and membrane lipid pools. Detailed analyses of FA levels and labeling revealed that about one-third of acyl chains accumulating in TAG during N-deprivation derive from preexisting membrane lipids, and in total, at least 45% of TAG FAs passed through membrane lipids at one point. Notably, most acyl chains in membrane lipids during recovery after N-resupply come from TAG. Fluxes of polyunsaturated FAs from plastidic membranes into TAG during N-deprivation were particularly noteworthy. These findings demonstrate a high degree of integration of TAG and membrane lipid metabolism and highlight a role for TAG in storage and supply of membrane lipid components.

In Chlamydomonas, about a third of triacylglycerol (TAG) made during nitrogen deprivation is derived from preexisting membranes, and most membranes made after resupply are derived from TAG.  相似文献   

10.
11.
Data on the hormonal regulation of the formation and mobilisation of fat body stores are presented and discussed in relation to general parameters of last instar larval development such as growth, food intake, and moulting. Crickets feed voraciously during the first half of the last larval stage. With the onset of feeding, fat body lipid synthesis increases, leading to increasing lipid stores in the fat body with a maximum reached on day 5. Lipid (42% of fat body fresh mass) is the main constituent of the fat body stores, followed by protein (6%) and glycogen (2%). During the second half of the last larval stage, feeding activity dramatically decreases, the glycogen reserves are depleted but lipid and protein reserves in the fat body remain at a high level except for the last day of the last larval stage when lipid and protein in the fat body are also largely depleted. The process of moulting consumes almost three quarters of the caloric equivalents that were acquired during the last larval stage. Adipokinetic hormone (AKH) inhibits effectively the synthesis of lipids in the larval fat body. Furthermore, AKH stimulates lipid mobilisation by activating fat body triacylglycerol lipase (TGL) in last larval and adult crickets. Both effects of AKH are weaker in larvae than in adults. This is the first report on the age-dependent basal activity of TGL in larval and adult insects. In addition, for the first time, an activation of TGL by AKH in a larval insect is shown.  相似文献   

12.
Proteomic approaches on lipid bodies have led to the identification of proteins associated with this compartment, showing that, rather than the inert fat depot, lipid droplets appear as complex dynamic organelles with roles in metabolism control and cell signaling. We focused our investigations on caleosin [ Arabidopsis thaliana caleosin 1 (AtClo1)], a minor protein of the Arabidopsis thaliana seed lipid body. AtClo1 shares an original triblock structure, which confers to the protein the capacity to insert at the lipid body surface. In addition, AtClo1 possesses a calcium-binding domain. The study of plants deficient in caleosin revealed its involvement in storage lipid degradation during seed germination. Using Saccharomyces cerevisiae as a heterologous expression system, we investigated the potential role of AtClo1 in lipid body biogenesis and filling. The green fluorescent protein-tagged protein was correctly targeted to lipid bodies. We observed an increase in the number and size of lipid bodies. Moreover, transformed yeasts accumulated more fatty acids (+46.6%). We confirmed that this excess of fatty acids was due to overaccumulation of lipid body neutral lipids, triacylglycerols and steryl esters. We showed that the original intrinsic properties of AtClo1 protein were sufficient to generate a functional lipid body membrane and to promote overaccumulation of storage lipids in yeast oil bodies.  相似文献   

13.
Since energy storage is a basic metabolic process, the synthesis of neutral lipids occurs in all kingdoms of life. The yeast, Saccharomyces cerevisiae, widely accepted as a model eukaryotic cell, contains two classes of neutral lipids, namely steryl esters and triacylglycerols. Triacylglycerols are synthesized through two pathways governed by the acyl-CoA diacylglycerol acyltransferase Dga1p and the phospholipid diacylglycerol acyltransferase Lro1p, respectively. Steryl esters are formed by the two steryl ester synthases Are1p and Are2p, two enzymes with overlapping function which also catalyze triacylglycerol formation, although to a minor extent. Storage of neutral lipids is tightly linked to the biogenesis of so called lipid particles. The role of this compartment in lipid homeostasis and its interplay with other organelles involved in neutral lipid dynamics, especially the endoplasmic reticulum and the plasma membrane, are subject of current investigations. In contrast to neutral lipid formation, mobilization of triacylglycerols and steryl esters in yeast are less characterized at the molecular level. Only recently, the triacylglycerol lipase Tgl3p was identified as the first yeast enzyme of this kind by function. Genes and gene products governing steryl ester mobilization still await identification. Besides biochemical properties of enzymes involved in yeast neutral lipid synthesis and degradation, regulatory aspects of these pathways and cell biological consequences of neutral lipid depletion will be discussed in this minireview.  相似文献   

14.
Oil bodies are sites of energy and carbon storage in many organisms including microalgae. As a step toward deciphering oil accumulation mechanisms in algae, we used proteomics to analyze purified oil bodies from the model microalga Chlamydomonas reinhardtii grown under nitrogen deprivation. Among the 248 proteins (≥ 2 peptides) identified by LC-MS/MS, 33 were putatively involved in the metabolism of lipids (mostly acyl-lipids and sterols). Compared with a recently reported Chlamydomonas oil body proteome, 19 new proteins of lipid metabolism were identified, spanning the key steps of the triacylglycerol synthesis pathway and including a glycerol-3-phosphate acyltransferase (GPAT), a lysophosphatidic acid acyltransferase (LPAT) and a putative phospholipid:diacylglycerol acyltransferase (PDAT). In addition, proteins putatively involved in deacylation/reacylation, sterol synthesis, lipid signaling and lipid trafficking were found to be associated with the oil body fraction. This data set thus provides evidence that Chlamydomonas oil bodies are not only storage compartments but also are dynamic structures likely to be involved in processes such as oil synthesis, degradation and lipid homeostasis. The proteins identified here should provide useful targets for genetic studies aiming at increasing our understanding of triacyglycerol synthesis and the role of oil bodies in microalgal cell functions.  相似文献   

15.
Oil bodies were purified from mature seed of two Brassica napus crop cultivars, Reston and Westar. Purified oil body proteins were subjected to both 2-DE followed by LC-MS/MS and multidimensional protein identification technology. Besides previously known oil body proteins oleosin, putative embryo specific protein ATS1, (similar to caleosin), and 11-beta-hydroxysteroid dehydrogenase-like protein (steroleosin), several new proteins were identified in this study. One of the identified proteins, a short chain dehydrogenase/reductase, is similar to a triacylglycerol-associated factor from narrow-leafed lupin while the other, a protein annotated as a myrosinase associated protein, shows high similarity to the lipase/hydrolase family of enzymes with GDSL-motifs. These similarities suggest these two proteins could be involved in oil body degradation. Detailed analysis of the two other oil body components, polar lipids (lipid monolayer) and neutral lipids (triacylglycerol matrix) was also performed. Major differences were observed in the fatty acid composition of polar lipid fractions between the two B. napus cultivars. Neutral lipid composition confirmed erucic acid and oleic acid accumulation in Reston and Westar seed oil, respectively.  相似文献   

16.
Tgl3p, Tgl4p and Tgl5p are the major triacylglycerol lipases of the yeast Saccharomyces cerevisiae catalyzing degradation of triacylglycerols stored in lipid droplets. Previous results from our laboratory (Athenstaedt and Daum, 2005, J. Biol. Chem. 280, 37301–37309) demonstrated that a yeast strain lacking all three triacylglycerol lipases accumulates not only triacylglycerols at high amount, but also steryl esters. Here we show a metabolic link between synthesis and mobilization of non-polar lipids. In particular, we demonstrate that a block in tri-acylglycerol degradation in a tgl3?tgl4?tgl5? triple mutant lacking all major triacylglycerol lipases causes marked changes in non-polar lipid synthesis. Under these conditions formation of triacylglycerols is reduced, whereas steryl ester synthesis is enhanced as shown by quantification of non-polar lipids, in vivo labeling of lipids using [14C]oleic acid and [14C]acetic acid as precursors, and enzyme analyses in vitro. In summary, this study demonstrates that triacylglycerol metabolism and steryl ester metabolism are linked processes. The importance of balanced storage and degradation of these components for lipid homeostasis in the yeast is highlighted.  相似文献   

17.
Glyoxysomes in cotyledons of cotton (Gossypium hirsutum, L.) seedlings enlarge dramatically within 48 h after seed imbibition (Kunce, C.M., R.N. Trelease, and D.C. Doman. 1984. Planta (Berl.). 161:156-164) to effect mobilization of stored cotton-seed oil. We discovered that the membranes of enlarging glyoxysomes at all stages examined contained a large percentage (36-62% by weight) of nonpolar lipid, nearly all of which were triacylglycerols (TAGs) and TAG metabolites. Free fatty acids comprised the largest percentage of these nonpolar lipids. Six uncommon (and as yet unidentified) fatty acids constituted the majority (51%) of both the free fatty acids and the fatty acids in TAGs of glyoxysome membranes; the same six uncommon fatty acids were less than 7% of the acyl constituents in TAGs extracted from cotton-seed storage lipid bodies. TAGs of lipid bodies primarily were composed of palmitic, oleic, and linoleic acids (together 70%). Together, these three major storage fatty acids were less than 10% of both the free fatty acids and fatty acids in TAGs of glyoxysome membranes. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) constituted a major portion of glyoxysome membrane phospholipids (together 61% by weight). Pulse-chase radiolabeling experiments in vivo clearly demonstrated that 14C-PC and 14C-PE were synthesized from 14C-choline and 14C-ethanolamine, respectively, in ER of cotyledons, and then transported to mitochondria; however, these lipids were not transported to enlarging glyoxysomes. The lack of ER involvement in glyoxysome membrane phospholipid synthesis, and the similarities in lipid compositions between lipid bodies and membranes of glyoxysomes, led us to formulate and test a new hypothesis whereby lipid bodies serve as the dynamic source of nonpolar lipids and phospholipids for membrane expansion of enlarging glyoxysomes. In a cell-free system, 3H-triolein (TO) and 3H-PC were indeed transferred from lipid bodies to glyoxysomes. 3H-PC, but not 3H-TO, also was transferred to mitochondria in vitro. The amount of lipid transferred increased linearly with respect to time and amount of acceptor organelle protein, and transfer occurred only when lipid body membrane proteins were associated with the donor lipid bodies. 3H-TO was transferred to and incorporated into glyoxysome membranes, and then hydrolyzed to free fatty acids. 3H-PC was transferred to and incorporated into glyoxysome and mitochondria membranes without subsequent hydrolysis. Our data are inconsistent with the hypothesis that ER contributes membrane lipids to glyoxysomes during postgerminative seedling growth.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Microsomal membrane preparations from Mortierella alpina catalysed the conversion of sn-glycerol 3-phosphate and [(14)C]oleoyl-CoA to radioactive phosphatidic acid, diacylglycerol and triacylglycerol. Experiments with lysophosphatidic acid and [(14)C]oleoyl-CoA gave a similar pattern of radioactivity in the complex lipids. The specific activity of lysophosphatidate acyltransferase was almost eight times greater than sn-glycerol-3-phosphate acyltransferase, indicating that the first acylation step was limiting in oil assembly in the microsomal membranes. Little conversion of radioactive oleate into phosphatidylcholine occurred, suggesting that triacylglycerol assembly and its relationship to phosphatidylcholine metabolism differed to that found in oilseeds.  相似文献   

19.
Sphingolipid activator proteins (SAPs), GM2 activator protein (GM2AP) and saposins (Saps) A-D are small, enzymatically inactive glycoproteins of the lysosome. Despite of their sequence homology, these lipid-binding and -transfer proteins show different specificities and varying modes of action. Water-soluble SAPs facilitate the degradation of membrane-bound glycosphingolipids with short oligosaccharide chains by exohydrolases at the membrane-water interface. There is strong evidence that degradation of endocytosed components of the cell membrane takes place at intraendosomal and intralysosomal membranes. The inner membranes of the lysosome differ from the limiting membrane of the organelle in some typical ways: the inner vesicular membranes lack a protecting glycocalix, and they are almost free of cholesterol, but rich in bis(monoacylglycero)phosphate (BMP), the anionic marker lipid of lysosomes. In this study, we prepared glycosylated Sap-B free of other Saps by taking advantage of the Pichia pastoris expression system. We used immobilized liposomes as a model for intralysosomal vesicular membranes to probe their interaction with recombinantly expressed Sap-B. We monitored this interaction using SPR spectroscopy and an independent method based on the release of radioactively labelled lipids from liposomal membranes. We show that, after initial binding, Sap-B disturbs the membrane structure and mobilizes the lipids from it. Lipid mobilization is dependent on an acidic pH and the presence of anionic lipids, whereas cholesterol is able to stabilize the liposomes. We also show for the first time that glycosylation of Sap-B is essential to achieve its full lipid-extraction activity. Removal of the carbohydrate moiety of Sap-B reduces its membrane-destabilizing quality. An unglycosylated Sap-B variant, Asn215His, which causes a fatal sphingolipid storage disease, lost the ability to extract membrane lipids at acidic pH in the presence of BMP.  相似文献   

20.
Soybean (Glycine max) lipoxygenase (LOX) has been proposed to be involved in reserve lipid mobilization during germination. Here, subcellular fractionation studies show that LOX1, -2, -3, -4, -5, and -6 isozymes were associated with the soluble fraction but not with purified oil bodies. The purified oil bodies contained small amounts of LOX1 (<0.01% total activity), which apparently is an artifact of the purification process. Immunogold labeling indicated that, in cotyledon parenchyma cells of LOX wild-type seeds that had soaked and germinated for 4 d, the majority of LOX protein was present in the cytoplasm. In 4-d-germinated cotyledons of a LOX1/2/3 triple null mutant (L0), a small amount of label was found in the cytoplasm. In epidermal cells, LOX appeared in vacuoles of both wild-type and L0 germinated seeds. No LOXs cross-reacting with seed LOX antibodies were found to be associated with the cell wall, plasma membrane, oil bodies, or mitochondria. Lipid analysis showed that degradation rates of total lipids and triacylglycerols between the wild type and L0 were not significantly different. These results suggest that LOX1, -2, -3, -4, -5, and -6 are not directly involved in reserve lipid mobilization during soybean germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号