首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological and evolutionary change is generated by variation in individual performance. Biologists have consequently long been interested in decomposing change measured at the population level into contributions from individuals, the traits they express and the alleles they carry. We present a novel method of estimating individual contributions to population growth and changes in distributions of quantitative traits and alleles. An individual's contribution to population growth is an individual's realized annual fitness. We demonstrate how the quantities we develop can be used to address a range of empirical questions, and provide an application to a detailed dataset of Soay sheep. The approach provides results that are consistent with those obtained using lifetime estimates of individual performance, yet is substantially more powerful as it allows lifetime performance to be decomposed into annual survival and fecundity contributions.  相似文献   

2.
Variation of heterozygosity at 11 loci for blood group systems (erythrocyte antigens), occurred during 14 years in the domestic pig population of Kemerovskaya breed is described. The two estimates computed for the population examined were represented by expected population heterozygosity, as a measure resistant to stochastic fluctuations, and individual heterozygosity, as a measure with the features of a quantitative trait. Our results showed that relative fitness of genotypic classes, formed by the alleles of erythrocyte antigen loci, was different. It was demonstrated that the population examined carried the alleles responsible for fitness decrease, as well as the alleles with stable and unstable equilibrium points (with increased and decreased relative fitness of heterozygotes). Suggestions based on these results, could be applied not only to the population examined, but also to the domesticated form of Sus scrofa as a whole.  相似文献   

3.
Adult survival is perhaps the fitness parameter most important to population growth in long-lived species. Intrinsic and extrinsic covariates of survival are therefore likely to be important drivers of population dynamics. We used long-term mark-recapture data to identify genetic, individual and environmental covariates of local survival in a natural population of mountain brushtail possums (Trichosurus cunninghami). Rainfall and intra-individual diversity at microsatellite DNA markers were associated with increased local survival of adults and juveniles. We contrasted the performance of several microsatellite heterozygosity measures, including internal relatedness (IR), homozygosity by loci (HL) and the mean multilocus estimate of the squared difference in microsatellite allele sizes within an individual (mean d 2). However, the strongest effect on survival was not associated with multilocus microsatellite diversity (which would indicate a genome-wide inbreeding effect), but a subset of two loci. This included a major histocompatibility complex (MHC)-linked marker and a putatively neutral microsatellite locus. For both loci, diversity measures incorporating allele size information had stronger associations with survival than measures based on heterozygosity, whether or not allele frequency information was included (such as IR). Increased survival was apparent among heterozygotes at the MHC-linked locus, but the benefits of heterozygosity to survival were reduced in heterozygotes with larger differences in allele size. The effect of heterozygosity on fitness-related traits was supported by data on endoparasites in a subset of the individuals studied in this population. There was no apparent density dependence in survival, nor an effect of sex, age or immigrant status. Our findings suggest that in the apparent absence of inbreeding, variation at specific loci can generate strong associations between fitness and diversity at linked markers.  相似文献   

4.
Inbreeding depression can have alarming impacts on threatened species with small population sizes. Assessing inbreeding has therefore become an important focus of conservation research. In this study, heterozygosity–fitness correlations (HFCs) were measured by genotyping 7 loci in 83 adult and 184 hatchling Lesser Antillean Iguanas, Iguana delicatissima, at a communal nesting site in Dominica to assess the role of inbreeding depression on hatchling fitness and recruitment to the adult population in this endangered species. We found insignificant correlations between multilocus heterozygosity and multiple fitness proxies in hatchlings and adults. Further, multilocus heterozygosity did not differ significantly between hatchlings and adults, which suggests that the survivorship of homozygous hatchlings does not differ markedly from that of their heterozygous counterparts. However, genotypes at two individual loci were correlated with hatching date, a finding consistent with the linkage between specific marker loci and segregating deleterious recessive alleles. These results provide only modest evidence that inbreeding depression influences the population dynamics of I. delicatissima on Dominica.  相似文献   

5.
Parasites are thought to provide a selective force capable of promoting genetic variation in natural populations. One rarely considered pathway for this action is via parasite-mediated selection against inbreeding. If parasites impose a fitness cost on their host and the offspring of close relatives have greater susceptibility to parasites due to the increased homozygosity that results from inbreeding, then parasite-mediated mortality may select against inbred individuals. This hypothesis has not yet been tested within a natural vertebrate population. Here we show that relatively inbred Soay sheep (Ovis aries), as assessed by microsatellite heterozygosity, are more susceptible to parasitism by gastrointestinal nematodes, with interactions indicating greatest susceptibility among adult sheep at high population density. During periods of high overwinter mortality on the island of Hirta, St. Kilda, Scotland, highly parasitised individuals were less likely to survive. More inbred individuals were also less likely to survive, which is due to their increased susceptibility to parasitism, because survival was random with respect to inbreeding among sheep that were experimentally cleared of their gastrointestinal parasite burden by anthelminthic treatment. As a consequence of this selection, average microsatellite heterozygosity increases with age in St. Kildan Soay sheep. We suggest that parasite-mediated selection acts to maintain genetic variation in this small island population by removing less heterozygous individuals.  相似文献   

6.
Conventionally, the extraordinary diversity of the vertebrate major histocompatibility complex (MHC is thought to have evolved in response to parasites and pathogens affecting fitness. More recently, reproductive mechanisms such as disassortative mating have been suggested as alternative mechanisms maintaining MHC diversity. A large unmanaged population of Soay sheep (Ovis aries L.) was used to investigate reproductive mechanisms in the maintenance of MHC diversity. Animals were sampled as new-born lambs and between 887 and 1209 individuals were typed at each of five microsatellite markers located either within or flanking the ovine MHC. All loci were in Hardy-Weinberg proportions. A novel likelihood-based approach was developed to analyse mating patterns using paternity data. No evidence for non-random mating with respect to MHC markers was found using this technique. We conclude that MHC diversity in the St Kildan Soay sheep population is unlikely to be maintained by mating preferences and that, in contrast with evidence from experimental mice populations, MHC variation plays no role in the mating structure of this population.  相似文献   

7.
Heterozygosity has been positively associated with fitness and population survival. However, the relationship between heterozygosity and adaptive phenotypic plasticity (i.e., plasticity which results in fitness homeostasis or improvement in changing environments) is unclear and has been poorly explored in seaweeds. In this study, we explored this relationship in the clonal red seaweed, Gracilaria chilensis by conducting three growth rate plasticity experiments under contrasting salinity conditions and by measuring heterozygosity with five microsatellite DNA markers. Firstly, we compared growth rate plasticity between the haploid and diploid phases. Secondly, we compared growth rate plasticity between diploids with different numbers of heterozygous loci. Finally, we compared growth rate plasticity between diploid plants from two populations that are expected to exhibit significant differences in heterozygosity. We found that, (i) diploids displayed a higher growth rate and lower growth rate plasticity than haploids, (ii) diploids with a higher number of heterozygous loci displayed lower growth rate plasticity than those exhibiting less heterozygosity, and (iii) diploid sporophytes from the population with higher heterozygosity displayed lower growth rate plasticity than those with lower heterozygosity. Accordingly, this study suggests that heterozygosity is inversely related to growth rate plasticity in G. chilensis. However, better genetic tools in seaweeds are required for a more definitive conclusion on the relationship between heterozygosity and phenotypic plasticity.  相似文献   

8.
Gompert Z 《Molecular ecology》2012,21(7):1542-1544
Admixture and introgression have varied effects on population viability and fitness. Admixture might be an important source of new alleles, particularly for small, geographically isolated populations. However, admixture might also cause outbreeding depression if populations are adapted to different ecological or climatic conditions. Because of the emerging use of translocation and admixture as a conservation and wildlife management strategy to reduce genetic load (termed genetic rescue), the possible effects of admixture have practical consequences ( Bouzat et al. 2009 ; Hedrick & Fredrickson 2010 ). Importantly, genetic load and local adaptation are properties of individual loci and epistatic interactions among loci rather than properties of genomes. Likewise, the outcome and consequences of genetic rescue depend on the fitness effects of individual introduced alleles. In this issue of Molecular Ecology, Miller et al. (2012) use model‐based, population genomic analyses to document locus‐specific effects of a recent genetic rescue in the bighorn sheep population within the National Bison Range wildlife refuge (NBR; Montana, USA). They find a subset of introduced alleles associated with increased fitness in NBR bighorn sheep, some of which experienced accelerated introgression following their introduction. These loci mark regions of the genome that could constitute the genetic basis of the successful NBR bighorn sheep genetic rescue. Although population genomic analyses are frequently used to study local adaptation and selection (e.g. Hohenlohe et al. 2010 ; Lawniczak et al. 2010 ), this study constitutes a novel application of this analytical framework for wildlife management. Moreover, the detailed demographic data available for the NBR bighorn sheep population provide a rare and powerful source of information and allow more robust population genomic inference than is often possible.  相似文献   

9.
Understanding how climate can interact with other factors in determining patterns of species abundance is a persistent challenge in ecology. Recent research has suggested that the dynamics exhibited by some populations may be a non-additive function of climate, with climate affecting population growth more strongly at high density than at low density. However, we lack methodologies to adequately explain patterns in population growth generated as a result of interactions between intrinsic factors and extrinsic climatic variation in non-linear systems. We present a novel method (the Functional Coefficient Threshold Auto-Regressive (FCTAR) method) that can identify interacting influences of climate and density on population dynamics from time-series data. We demonstrate its use on count data on the size of the Soay sheep population, which is known to exhibit dynamics generated by nonlinear and non-additive interactions between density and climate, living on Hirta in the St Kilda archipelago. The FCTAR method suggests that climate fluctuations can drive the Soay sheep population between different dynamical regimes--from stable population size through limit cycles and non-periodic fluctuations.  相似文献   

10.
Heterozygosity–fitness correlations (HFCs) are often used to link individual genetic variation to differences in fitness. However, most studies examining HFCs find weak or no correlations. Here, we derive broad theoretical predictions about how many loci are needed to adequately measure genomic heterozygosity assuming different levels of identity disequilibrium (ID), a proxy for inbreeding. We then evaluate the expected ability to detect HFCs using an empirical data set of 200 microsatellites and 412 single nucleotide polymorphisms (SNPs) genotyped in two populations of bighorn sheep (Ovis canadensis), with different demographic histories. In both populations, heterozygosity was significantly correlated across marker types, although the strength of the correlation was weaker in a native population compared with one founded via translocation and later supplemented with additional individuals. Despite being bi-allelic, SNPs had similar correlations to genome-wide heterozygosity as microsatellites in both populations. For both marker types, this association became stronger and less variable as more markers were considered. Both populations had significant levels of ID; however, estimates were an order of magnitude lower in the native population. As with heterozygosity, SNPs performed similarly to microsatellites, and precision and accuracy of the estimates of ID increased as more loci were considered. Although dependent on the demographic history of the population considered, these results illustrate that genome-wide heterozygosity, and therefore HFCs, are best measured by a large number of markers, a feat now more realistically accomplished with SNPs than microsatellites.  相似文献   

11.
Egg production and individual genetic diversity in lesser kestrels   总被引:3,自引:2,他引:1  
Fecundity is an important component of individual fitness and has major consequences on population dynamics. Despite this, the influence of individual genetic variability on egg production traits is poorly known. Here, we use two microsatellite-based measures, homozygosity by loci and internal relatedness, to analyse the influence of female genotypic variation at 11 highly variable microsatellite loci on both clutch size and egg volume in a wild population of lesser kestrels (Falco naumanni). Genetic diversity was associated with clutch size, with more heterozygous females laying larger clutches, and this effect was statistically independent of other nongenetic variables such as female age and laying date, which were also associated with fecundity in this species. However, egg volume was not affected by female heterozygosity, confirming previous studies from pedigree-based breeding experiments which suggest that this trait is scarcely subjected to inbreeding depression. Finally, we explored whether the association between heterozygosity and clutch size was due to a genome-wide effect (general effect) or to single locus heterozygosity (local effect). Two loci showed a stronger influence but the correlation was not fully explained by these two loci alone, suggesting that a main general effect underlies the association observed. Overall, our results underscore the importance of individual genetic variation for egg production in wild bird populations, a fact that could have important implications for conservation research and provides insights into the study of clutch size evolution and genetic variability maintenance in natural populations.  相似文献   

12.
The link between adaptive genetic variation, individual fitness and wildlife population dynamics is fundamental to the study of ecology and evolutionary biology. In this study, a Bayesian modelling approach was employed to examine whether individual variability at two major histocompatibility complex (MHC) class II loci (DQA and DRB) and eight neutral microsatellite loci explained variation in female reproductive success for wild populations of European brown hare (Lepus europaeus). We examined two aspects of reproduction: the ability to reproduce (sterility) and the number of offspring produced (fecundity). Samples were collected from eastern Austria, experiencing a sub‐continental climatic regime, and from Belgium with a more Atlantic‐influenced climate. As expected, reproductive success (both sterility and fecundity) was significantly influenced by age regardless of sampling locality. For Belgium, there was also a significant effect of DQA heterozygosity in determining whether females were able to reproduce (95% highest posterior density interval of the regression parameter [−3.64, −0.52]), but no corresponding effect was found for Austria. In neither region was reproduction significantly associated with heterozygosity at the DRB locus. DQA heterozygotes from both regions also showed a clear tendency, but not significantly so, to produce a larger number of offspring. Predictive simulations showed that, in Belgium, sub‐populations of homozygotes will have higher rates of sterile individuals and lower average offspring numbers than heterozygotes. No similar effect is predicted for Austria. The mechanism for the spatial MHC effect is likely to be connected to mate choice for increased heterozygosity or to the linkage of certain MHC alleles with lethal recessives at other loci.  相似文献   

13.
Abstract Parasite resistance and body size are subject to directional natural selection in a population of feral Soay sheep (Ovis aries) on the island of St. Kilda, Scotland. Classical evolutionary theory predicts that directional selection should erode additive genetic variation and favor the maintenance of alleles that have negative pleiotropic effects on other traits associated with fitness. Contrary to these predictions, in this study we show that there is considerable additive genetic variation for both parasite resistance, measured as fecal egg count (FEC), and body size, measured as weight and hindleg length, and that there are positive genetic correlations between parasite resistance and body size in both sexes. Body size traits had higher heritabilities than parasite resistance. This was not due to low levels of additive genetic variation for parasite resistance, but was a consequence of high levels of residual variance in FEC. Measured as coefficients of variation, levels of additive genetic variation for FEC were actually higher than for weight or hindleg length. High levels of additive genetic variation for parasite resistance may be maintained by a number of mechanisms including high mutational input, balancing selection, antagonistic pleiotropy, and host‐parasite coevolution. The positive genetic correlation between parasite resistance and body size, a trait also subject to sexual selection in males, suggests that parasite resistance and growth are not traded off in Soay sheep, but rather that genetically resistant individuals also experience superior growth.  相似文献   

14.
Inbreeding (the mating between closely related individuals) often has detrimental effects that are associated with loss of heterozygosity at overdominant loci, and the expression of deleterious recessive alleles. However, determining which loci are detrimental when homozygous, and the extent of their phenotypic effects, remains poorly understood. Here, we utilize a unique inbred population of clonal (thelytokous) honey bees, Apis mellifera capensis, to determine which loci reduce individual fitness when homozygous. This asexual population arose from a single worker ancestor approximately 20 years ago and has persisted for at least 100 generations. Thelytokous parthenogenesis results in a 1/3 of loss of heterozygosity with each generation. Yet, this population retains heterozygosity throughout its genome due to selection against homozygotes. Deep sequencing of one bee from each of the three known sub‐lineages of the population revealed that 3,766 of 10,884 genes (34%) have retained heterozygosity across all sub‐lineages, suggesting that these genes have heterozygote advantage. The maintenance of heterozygosity in the same genes and genomic regions in all three sub‐lineages suggests that nearly every chromosome carries genes that show sufficient heterozygote advantage to be selectively detrimental when homozygous.  相似文献   

15.
Relationship between heterozygosity at allozyme loci, chromosomal interchanges and fitness was analyzed in a rye cultivar showing a polymorphism for such rearrangements. Nine allozyme systems (ACO, ACPH, GOT, GPI, LAP, MDH, PER, PGD and PGM) and five components of fitness (number of fertile tillers, total offspring, egg cell fertility, flowers/ear and seeds/ear) were studied. The estimated selection coefficients against interchange heterozygotes ranged from s = 0.12 to s = 0.34. A significant effect of the genic heterozygosity on some fitness components was observed in interchange heterozygotes (tillering and total offspring), in their standard homozygous sibs (flowers/ear and seeds/ear) and in the descendants of the crosses between standard karyotypes (flowers/ear, seeds/ear and egg cell fertility). However, the main effect was linked to genetic background associated to different crosses. Significant differences for Acph-1, Gpi-1, Lap-1, Mdh-1, Mdh-4, Pgd-2 and Pgm-1 loci were also found in some of these crosses although these differences were inconsistent. This suggests that probably the allozyme loci analyzed were not directly contributing to the fitness and that they are linked, in some cases, to different deleterious alleles depending on both cross and locus. This fact could support the local effect hypothesis as explanation although we do not discard the existence of some inbreeding level (general effect hypothesis) since all crosses and loci studied show a overall consistent trend of increased fitness with increased heterozygosity.  相似文献   

16.
There is compelling evidence about the manifest effects of inbreeding depression on individual fitness and populations' risk of extinction. The majority of studies addressing inbreeding depression on wild populations are generally based on indirect measures of inbreeding using neutral markers. However, the study of functional loci, such as genes of the major histocompatibility complex (MHC), is highly recommended. MHC genes constitute an essential component of the immune system of individuals, which is directly related to individual fitness and survival. In this study, we analyse heterozygosity fitness correlations of neutral and adaptive genetic variation (22 microsatellite loci and two loci of the MHC class II, respectively) with the age of recruitment and breeding success of a decimated and geographically isolated population of a long-lived territorial vulture. Our results indicate a negative correlation between neutral genetic diversity and age of recruitment, suggesting that inbreeding may be delaying reproduction. We also found a positive correlation between functional (MHC) genetic diversity and breeding success, together with a specific positive effect of the most frequent pair of cosegregating MHC alleles in the population. Globally, our findings demonstrate that genetic depauperation in small populations has a negative impact on the individual fitness, thus increasing the populations' extinction risk.  相似文献   

17.
There is a growing body of literature suggesting that the fitness of an individual increases with the observed number of heterozygous loci. Broad theoretical considerations indicate that under various sorts of balancing selection, this is what one should generally expect in a population of multiple-locus genotypes. To date, however, it has not been possible to distinguish between two potential explanations of the phenomenon. The first explanation is that the loci examined are themselves responsible for the fitness differences observed (or, equivalents, are very closely linked to those that do). The genetic variation in question is thought to be maintained in polymorphic equilibrium by some form of balancing selection. The second explanation assumes that the observed loci are themselves selectively irrelevant but that their heterozygosity reflects that of the total genome. Genomic heterozygosity is thought to be predictive of fitness, being an obverse measure of generalized inbreeding depression. We provide a formal derivation of an explicit relationship between fitness and multiple-locus genotype for a simple form of the first explanation, the multiplicative overdominance model. The inbreeding depression model is a degenerate special case of this more general formulation. A formal estimation and testing framework is constructed that should facilitate evaluation of the two models with empiric data on heterozygosity and fitness.  相似文献   

18.
Understanding the genetic architecture of phenotypic variation in natural populations is a fundamental goal of evolutionary genetics. Wild Soay sheep (Ovis aries) have an inherited polymorphism for horn morphology in both sexes, controlled by a single autosomal locus, Horns. The majority of males have large normal horns, but a small number have vestigial, deformed horns, known as scurs; females have either normal horns, scurs or no horns (polled). Given that scurred males and polled females have reduced fitness within each sex, it is counterintuitive that the polymorphism persists within the population. Therefore, identifying the genetic basis of horn type will provide a vital foundation for understanding why the different morphs are maintained in the face of natural selection. We conducted a genome-wide association study using ~36000 single nucleotide polymorphisms (SNPs) and determined the main candidate for Horns as RXFP2, an autosomal gene with a known involvement in determining primary sex characters in humans and mice. Evidence from additional SNPs in and around RXFP2 supports a new model of horn-type inheritance in Soay sheep, and for the first time, sheep with the same horn phenotype but different underlying genotypes can be identified. In addition, RXFP2 was shown to be an additive quantitative trait locus (QTL) for horn size in normal-horned males, accounting for up to 76% of additive genetic variation in this trait. This finding contrasts markedly from genome-wide association studies of quantitative traits in humans and some model species, where it is often observed that mapped loci only explain a modest proportion of the overall genetic variation.  相似文献   

19.
Especially for rare species occurring in small populations, which are prone to loss of genetic variation and inbreeding, detailed knowledge of the relationship between heterozygosity and fitness is generally lacking. After reporting on allozyme variation and fitness in relation to population size in the rare plant Gentiana pneumonanthe, we present a more detailed analysis of the association between heterozygosity and individual fitness. The aim of this study was to test whether increased fitness of more heterozygous individuals is explained best by the ‘inbreeding’ hypothesis or by the ‘overdominance’ hypothesis. Individual fitness was measured during 8 months of growth in the greenhouse as the performance for six life-history parameters. PCA reduced these parameters to four main Fitness Components. Individual heterozygosity was scored for seven polymorphic allozyme loci. For some of these loci (e.g. Aat3, Pgm1 and 6Pgdh2) heterozygotes showed a significantly higher relative fitness than homozygotes. To test the inbreeding model, regression analyses were performed between each Fitness Component and the number of heterozygous loci per individual. Multiple regressions with the adaptive distance of five loci as independent variables were used to test the overdominance model. Only the inbreeding model was a statistically significant explanation for the relationship between heterozygosity and fitness in G. pneumonanthe. The number of heterozygous loci was significantly negatively correlated with the coefficients of variation of three of the six initially measured fitness parameters. This suggests a lower developmental stability among more homozygous plants and may explain the higher phenotypic variation in small populations of the species observed earlier. The importance of the results for conservation biology is discussed.  相似文献   

20.
Understanding the genetic basis of local adaptation requires insight in the fitness effects of individual loci under natural field conditions. While rapid progress is made in the search for genes that control differences between plant populations, it is typically unknown whether the genes under study are in fact key targets of habitat-specific natural selection. Using a quantitative trait loci (QTL) approach, we show that a QTL associated with flowering-time variation between two locally adapted wild barley populations is an important determinant of fitness in one, but not in the other population's native habitat. The QTL mapped to the same position as a habitat-specific QTL for field fitness that affected plant reproductive output in only one of the parental habitats, indicating that the genomic region is under differential selection between the native habitats. Consistent with the QTL results, phenotypic selection of flowering time differed between the two environments, whereas other traits (growth rate and seed weight) were under selection but experienced no habitat-specific differential selection. This implies the flowering-time QTL as a driver of adaptive population divergence. Our results from phenotypic selection and QTL analysis are consistent with local adaptation without genetic trade-offs in performance across environments, i.e. without alleles or traits having opposing fitness effects in contrasting environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号