首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pursuit of the actinomycete pyrrolobenzodiazepine natural product sibiromycin as a chemotherapeutic agent has been limited by its cardiotoxicity. Among pyrrolobenzodiazepines, cardiotoxicity is associated with hydroxylation at position 9. Deletion of the methyltransferase gene sibL abolishes the production of sibiromycin. Supplementation of growth media with 4-methylanthranilic acid can substitute for its native 3-hydroxy congener. Cultures grown in this fashion yielded 9-deoxysibiromycin. In this study, we characterize the structure and biological activity of sibiromycin and 9-deoxysibiromycin methyl carbinolamines. Preliminary in vitro evidence suggests that 9-deoxysibiromycin exhibits reduced cardiotoxicity while gaining antitumor activity. These results strongly support further exploration of the production and evaluation of monomeric and dimeric glycosylated pyrrolobenzodiazepine analogues of sibiromycin.  相似文献   

2.
Pyrrolobenzodiazepines, a class of natural products produced by actinomycetes, are sequence selective DNA alkylating compounds with significant antitumor properties. Among the pyrrolo[1,4]benzodiazepines (PBDs) sibiromycin, one of two identified glycosylated PBDs, displays the highest affinity for DNA and the most potent antitumor properties. Despite the promising antitumor properties clinical trials of sibiromycin were precluded by the cardiotoxicity effect in animals attributed to the presence of the C-9 hydroxyl group. As a first step toward the development of sibiromycin analogs, we have cloned and localized the sibiromycin gene cluster to a 32.7-kb contiguous DNA region. Cluster boundaries tentatively assigned by comparative genomics were verified by gene replacement experiments. The sibiromycin gene cluster consisting of 26 open reading frames reveals a “modular” strategy in which the synthesis of the anthranilic and dihydropyrrole moieties is completed before assembly by the nonribosomal peptide synthetase enzymes. In addition, the gene cluster identified includes open reading frames encoding enzymes involved in sibirosamine biosynthesis, as well as regulatory and resistance proteins. Gene replacement and chemical complementation studies are reported to support the proposed biosynthetic pathway.Pyrrolo[1,4]benzodiazepines (PBDs) are a class of natural products found in actinomycetes (Fig. (Fig.1)1) and defined by a common pyrrolo[1,4]benzodiazepine ring system (41). They are sequence-selective DNA alkylating agents with significant antitumor properties (21). Once in the minor groove of DNA an aminal bond is formed between the electrophilic C-11 of a PBD and the exocyclic N-2 of a guanine base in a double-stranded DNA (20). Formation of the PBD-DNA complex causes very little distortion of the double-helical structure of DNA (20), and as such this complex is less readily repaired by DNA repair proteins compared to DNA adducts with other alkylating agents (4), significantly contributing to the potency of PBDs. Successful syntheses of PBD analogs have been reported, but synthetic procedures for the more chemically diverse PBDs are laborious and have modest yields (1, 44). In addition, a chemical synthesis for glycosylated PBDs has not yet been accomplished. Structure-activity relationship studies on the synthetically and naturally produced PBDs showed that the C-9 hydroxylation present in anthramycin is the source of the cardiotoxic properties of this compound (Fig. (Fig.1)1) (3, 17, 26, 38). These studies also showed that O glycosylation at C7 significantly enhanced DNA-binding affinity (Fig. (Fig.1)1) (17). The only known glycosylated PBDs are sibiromycin and sibanomicin produced by Streptosporangium sibiricum and Micromonospora sp., respectively, both containing a sibirosamine moiety (16, 35). Only the producer of sibiromycin is commercially available. A loose correlation between DNA binding affinity and cytotoxicity has been shown with naturally and synthetically produced PBDs (42). Sibiromycin has the highest DNA binding affinity and cytotoxicity with 50% inhibitory concentrations varying from 4 to 1.7 pM in leukemia, plasmacytoma, and ovarian cancer cell lines (42). Despite its potency, further testing of sibiromycin is precluded due to the presence of C-9 hydroxyl group responsible for the cardiotoxic properties. In order to generate analogs of glycosylated PBDs by combinatorial biosynthesis and to exploit their potency, we chose to characterize the sibiromycin gene cluster.Open in a separate windowFIG. 1.(A) Pyrrolobenzodiazepine common ring system. (B) Metabolic precursors and chemical structures of sibiromycin, anthramycin, tomaymycin, and lincomycin A.The metabolic precursors of the pyrrolobenzodiazepine ring of three PBDs (anthramycin, sibiromycin, and tomaymycin) were identified by feeding experiments to be l-tryptophan via the kynurenine pathway for the anthranilate moiety and l-tyrosine for the hydropyrrole moiety (11), suggesting a common biosynthetic pathway for these moieties in PBDs. The tyrosine-to-hydropyrrole transformation has been also identified by feeding studies in the biosynthesis of lincomycin, a lincosamide antibiotic (2) (Fig. (Fig.1B).1B). Despite the sequencing of the biosynthetic gene clusters of anthramycin (10) and lincomycin (37), limited functional assignment of open reading frames (ORFs) and elucidation of the biosynthetic pathways were reported partly due to the presence of several gene products with no significant similarities to functionally characterized enzymes. We reasoned that we could take advantage of the identification of the sibiromycin gene cluster not only to try to lay the groundwork for the production of analogs of sibiromycin by combinatorial biosynthesis but also to establish the biosynthetic pathways of the anthranilate and the hydropyrrole moieties by a comparative analysis of the PBDs and lincomycin gene clusters. To help in this analysis, we have also utilized the gene cluster of another PBD, tomaymycin, whose characterization is reported in the accompanying study (24a). The comparative analysis takes advantage of the presence of similarity and differences at the anthranilate and hydropyrrole moieties among these natural products (Fig. (Fig.1).1). For example, both anthramycin and sibiromycin contain C-8 methyl and C-9 hydroxyl substituents not present in tomaymycin. However, tomaymycin shares with sibiromycin a C-7 hydroxyl substituent. Therefore, homologous proteins involved in C-9 hydroxylation are expected to be present in the anthramycin and sibiromycin gene cluster but absent in the tomaymycin gene cluster. We applied a similar approach for the biosynthesis of the hydropyrrole moiety using also the lincomycin gene cluster.In the present study, we describe the cloning and sequencing of the sibiromycin gene cluster, the first biosynthetic gene cluster for a glycosylated PBD. Gene replacement experiments were used to confirm that the identified gene cluster was involved in sibiromycin biosynthesis, to define the boundaries of the sibiromycin gene cluster, and to elucidate the biosynthesis of the anthranilate moiety. Using the comparative approach, we were able not only to elucidate the sibiromycin biosynthetic pathway with a certain degree of confidence but also to assign ORFs in the anthramycin gene cluster contributing to the determination of the anthramycin biosynthetic pathway. The proposed biosynthetic pathway for the anthranilic moiety was supported by gene replacement and chemical complementation studies. The data reported here provide the basis for future studies on the enzymes involved in the biochemistry present in these pathways and for combinatorial biosynthetic experiments for the production of glycosylated PBDs.  相似文献   

3.
Polo-box domains confer target specificity to the Polo-like kinase family   总被引:1,自引:0,他引:1  
Polo-like kinases (Plks) contain a conserved Polo-box domain, shown to bind to phosphorylated Ser-pSer/pThr-Pro motifs. The Polo-box domain of Plk-1 mediates substrate interaction and plays an important role in subcellular localization. Intriguingly, the major interactions between the PBD and the optimal recognition peptide are mediated by highly conserved residues in the PBD, suggesting there is little target specificity conveyed by the various PBDs. However, here we show that the affinity of the purified Plk1-3 PBDs to both a physiological Cdc25C derived phospho-peptide and an optimal recognition phospho-peptide differs significantly among family members. To decipher the role of the PBDs and kinase domains in inferring Plk specificity, we exchanged the PBD of Plk1 (PBD1) with the PBD of Plk2, 3, or 4 (PBD2-4). The resulting hybrid proteins can restore bipolar spindle formation and centrosome maturation in Plk1-depleted U2OS cells to various degrees. In these experiments PBD2 was most efficient in complementing PBD-function. Using the MPM2 antibody that recognizes a large set of mitotic phospho-proteins, we could show that PBD1 and PBD2 display some limited overlap in target recognition. Thus, PBDs convey a significant deal of target specificity, indicating that there is only a limited amount of functional redundancy possible within the Plk family.  相似文献   

4.
The naturally occurring pyrrolo[2,1- c][1,4]benzodiazepine (PBD) monomers such as sibiromycin, anthramycin, and tomaymycin form stable covalent adducts with duplex DNA at purine-guanine-purine sites. A correlative relationship between DNA-binding affinity, as measured by enhanced thermal denaturation temperature of calf thymus DNA ( T m), and cytotoxicity is well documented for these naturally occurring compounds and a range of synthetic analogues with sibiromycin having the highest Delta T m value (16.3 degrees C), reflecting favorable hydrogen-bonding interactions between the molecule and DNA bases. We report here that, surprisingly, the structurally simple synthetic C2-(2-naphthyl)-substituted pyrrolo[2,1- c][1,4]benzodiazepine monomer ( 5) has a Delta T m value (15.8 degrees C) similar to that of sibiromycin and significantly higher than the values for either anthramycin (13.0 degrees C) or tomaymycin (2.6 degrees C). 5 also has similar cytotoxic potency to sibiromycin which is widely regarded as the most potent naturally occurring PBD monomer. To investigate this, we have used NMR in conjunction with molecular dynamics to study the 2:1 adduct formed between 5 and the DNA duplex d(AATCTTTAAAGATT) 2. In contrast to the hydrogen-bonding interactions which predominate in the case of sibiromycin and anthramycin adducts, we have shown that the high binding affinity of 5 is due predominantly to hydrophobic (van der Waals) interactions. The high-resolution 2D NOESY, TOCSY, and COSY data obtained have also allowed unequivocal determination of the orientation of the PBD molecule (A-ring toward 3'-end of covalently bound strand), the stereochemistry at the C11 position of the PBD (C11 S), and the conformation of the C2-naphthyl ring which extends along the floor of the minor groove thus optimizing hydrophobic interactions with DNA. These results provide opportunities for future drug design in terms of extending planar hydrophobic groups at the C2 position of PBDs to maximize binding affinity.  相似文献   

5.
A new class of Pyrrolo[1,4]benzodiazepines (PBDs) analogs featuring a pyrazolo[4,3-e]pyrrolo[1,2-a][1,4]diazepinone ring system has been designed and synthesized. In these compounds the A-benzene ring, characteristic of PBDs, has been replaced by a dimethylpyrazole ring, a modification suggested by modelling studies performed on the PBD base structure. Biological evaluation releaved appreciable antitumor activity for compounds 14 and 15 (8.84–22.4 μM) which encourages further investigation of the N6 and N7 alkyl pyrazole analogs.  相似文献   

6.
The peroxisome-biogenesis disorders (PBDs) are a genetically and phenotypically diverse group of diseases caused by defects in peroxisome assembly. One of the milder clinical variants within the PBDs is neonatal adrenoleukodystrophy (NALD), a disease that is usually associated with partial defects in the import of peroxisomal matrix proteins that carry the type 1 or type 2 peroxisomal targeting signals. Here, we characterize the sole representative of complementation group 13 of the PBDs, a patient with NALD (patient PBD222). Skin fibroblasts from patient PBD222 display defects in the import of multiple peroxisomal matrix proteins. However, residual matrix-protein import can be detected in cells from patient PBD222, consistent with the relatively mild phenotypes of the patient. PEX13 encodes a peroxisomal membrane protein with a cytoplasmically exposed SH3 domain, and we find that expression of human PEX13 restores peroxisomal matrix-protein import in cells from patient PBD222. Furthermore, these cells are homozygous for a missense mutation at a conserved position in the PEX13 SH3 domain. This mutation attenuated the activity of human PEX13, and an analogous mutation in yeast PEX13 also reduced its activity. The mutation was absent in >100 control alleles, indicating that it is not a common polymorphism. Previous studies have demonstrated extragenic suppression in the PBDs, but the phenotypes of patient PBD222 cells could not be rescued by expression of any other human PEX genes. Taken together, these results provide strong evidence that mutations in PEX13 are responsible for disease in patient PBD222 and, by extension, in complementation group 13 of the PBDs.  相似文献   

7.
The serine/threonine kinases Plk1, Plk2, and Plk3 harbor a protein–protein interaction domain dubbed polo-box domain (PBD). Recently, the inhibition of the PBD of the cancer target Plk1 has been successfully explored as an alternative to the inhibition of the kinase by ATP-competitive ligands. However, because the PBDs of Plk1, Plk2, and Plk3 have very similar optimal binding motifs, absolute specificity for the PBD of Plk1 over the PBDs of Plk2 and Plk3 may also represent a big challenge for a small molecule. To aid in the activity profiling of Plk PBD inhibitors, and to identify selective small molecules that will reveal the cellular consequences of inhibiting the PBDs of Plk2 and Plk3, we have developed high-throughput assays based on fluorescence polarization against the PBDs of Plk2 and Plk3. The assays are stable with regard to time and 10% dimethyl sulfoxide and have Z′ values 0.7, making them well-suited for high-throughput screening. Moreover, our data provide insights into the binding preferences of the PBDs of Plk2 and Plk3.  相似文献   

8.
The biosynthesis of the antitumor antibiotic sibiromycin by Streptosporangium sibiricum requires the construction of four units: the amino sugar from glucose; the anthranilate ring from DL-tryptophan probably via kynurenine; the aromatic methyl group from methionine; the propylidene proline from L-tyrosine with the loss of two aromatic carbons and addition of a C-1 from methionine. Retention of tritium from DL-[5-3H]tryptophan in sibiromycin suggest an NIH shift during hydroxylation of an intermediate.  相似文献   

9.
Plants produce a huge array of specialized metabolites that have important functions in defense against biotic and abiotic stresses. Many of these compounds are glycosylated by family 1 glycosyltransferases (GTs). Oats (Avena spp.) make root-derived antimicrobial triterpenes (avenacins) that provide protection against soil-borne diseases. The ability to synthesize avenacins has evolved since the divergence of oats from other cereals and grasses. The major avenacin, A-1, is acylated with N-methylanthranilic acid. Previously, we have cloned and characterized three genes for avenacin synthesis (for the triterpene synthase SAD1, a triterpene-modifying cytochrome P450 SAD2, and the serine carboxypeptidase-like acyl transferase SAD7), which form part of a biosynthetic gene cluster. Here, we identify a fourth member of this gene cluster encoding a GT belonging to clade L of family 1 (UGT74H5), and show that this enzyme is an N-methylanthranilic acid O-glucosyltransferase implicated in the synthesis of avenacin A-1. Two other closely related family 1 GTs (UGT74H6 and UGT74H7) are also expressed in oat roots. One of these (UGT74H6) is able to glucosylate both N-methylanthranilic acid and benzoic acid, whereas the function of the other (UGT74H7) remains unknown. Our investigations indicate that UGT74H5 is likely to be key for the generation of the activated acyl donor used by SAD7 in the synthesis of the major avenacin, A-1, whereas UGT74H6 may contribute to the synthesis of other forms of avenacin that are acylated with benzoic acid.  相似文献   

10.
Clinically used lincosamide antibiotic lincomycin incorporates in its structure 4-propyl-L-proline (PPL), an unusual amino acid, while celesticetin, a less efficient related compound, makes use of proteinogenic L-proline. Biochemical characterization, as well as phylogenetic analysis and homology modelling combined with the molecular dynamics simulation were employed for complex comparative analysis of the orthologous protein pair LmbC and CcbC from the biosynthesis of lincomycin and celesticetin, respectively. The analysis proved the compared proteins to be the stand-alone adenylation domains strictly preferring their own natural substrate, PPL or L-proline. The LmbC substrate binding pocket is adapted to accomodate a rare PPL precursor. When compared with L-proline specific ones, several large amino acid residues were replaced by smaller ones opening a channel which allowed the alkyl side chain of PPL to be accommodated. One of the most important differences, that of the residue corresponding to V306 in CcbC changing to G308 in LmbC, was investigated in vitro and in silico. Moreover, the substrate binding pocket rearrangement also allowed LmbC to effectively adenylate 4-butyl-L-proline and 4-pentyl-L-proline, substrates with even longer alkyl side chains, producing more potent lincosamides. A shift of LmbC substrate specificity appears to be an integral part of biosynthetic pathway adaptation to the PPL acquisition. A set of genes presumably coding for the PPL biosynthesis is present in the lincomycin - but not in the celesticetin cluster; their homologs are found in biosynthetic clusters of some pyrrolobenzodiazepines (PBD) and hormaomycin. Whereas in the PBD and hormaomycin pathways the arising precursors are condensed to another amino acid moiety, the LmbC protein is the first functionally proved part of a unique condensation enzyme connecting PPL to the specialized amino sugar building unit.  相似文献   

11.
Pyrrolobenzodiazepines (PBDs) are covalent-binding DNA-interactive agents with growing importance as payloads in Antibody Drug Conjugates (ADCs). Until now, PBDs were thought to covalently bond to C2-NH2 groups of guanines in the DNA-minor groove across a three-base-pair recognition sequence. Using HPLC/MS methodology with designed hairpin and duplex oligonucleotides, we have now demonstrated that the PBD Dimer SJG-136 and the C8-conjugated PBD Monomer GWL-78 can covalently bond to a terminal guanine of DNA, with the PBD skeleton spanning only two base pairs. Control experiments with the non-C8-conjugated anthramycin along with molecular dynamics simulations suggest that the C8-substituent of a PBD Monomer, or one-half of a PBD Dimer, may provide stability for the adduct. This observation highlights the importance of PBD C8-substituents, and also suggests that PBDs may bind to terminal guanines within stretches of DNA in cells, thus representing a potentially novel mechanism of action at the end of DNA strand breaks.  相似文献   

12.
Peroxisome biogenesis disorders (PBDs) are fatal autosomal recessive diseases and are caused by impaired peroxisome biogenesis. PBDs are genetically heterogeneous and classified into 13 complementation groups (CGs). CG8 is one of the most common groups and has three clinical phenotypes, including Zellweger syndrome (ZS), neonatal adrenoleukodystrophy, and infantile Refsum disease (IRD). We recently isolated PEX26 as the pathogenic gene for PBD of CG8. Pex26p functions in recruiting to peroxisomes the complexes of the AAA ATPase peroxins, Pex1p and Pex6p. In the present work, we identified four distinct mutations in PEX26 from five patients of CG8 PBD including 2 with ZS and 3 with IRD, in addition to 7 mutant alleles in 8 patients in the first report describing the pathogenic PEX26 gene for CG8 PBD. Phenotype-genotype analyses revealed that temperature-sensitive (ts) peroxisome assembly gave rise to a milder IRD in contrast to the non-ts phenotype of the cells from ZS patients. Furthermore, we present several lines of evidence that show that the instability, insufficient binding to Pex1p x Pex6p complexes, or mislocalization of patient-derived Pex26p mutants is most likely responsible for the CG8 PBDs.  相似文献   

13.
14.
The biosynthetic conversions of arachidonic acid to hydroperoxyeicosatetraenoic acids (HPETEs) and the further conversion of leukotriene epoxides are accompanied by stereoselective hydrogen abstraction from the reaction substrate. Furthermore, this hydrogen removal has always been found to occur in fixed stereochemical relationship to carbon-oxygen chiral center(s) in the substrate or product. We have used stereospecifically labeled 10-3H-substrates with 14C internal standard to investigate whether the same relationships bear in HPETE and leukotriene formation during autoxidation. After autoxidation of labeled arachidonate, both the 8(R)- and 8(S)-HPETE enantiomers (resolved as diastereomer derivatives) and the 12(RS)-HPETE were observed to retain 41-47% 3H relative to the starting material. In autoxidative formation of leukotrienes from labeled 15(S)-HPETE the four main leukotrienes, including two derived from 14,15-leukotriene A4 hydrolysis, were observed to have retained an average of 45% 3H. Primary and secondary isotope effects were found to accompany these reactions. The results prove that stereorandom hydrogen abstraction occurs in autoxidation and that the hydrogen loss bears no stereochemical relationship to chiral oxygen center(s) in the HPETE product, (8(R) or 8(S], or the 15(S)-hydroperoxy substrate. We conclude that the chiral features of the biosynthetic reactions are a reflection of enzymatic control of stereochemistry. Nonetheless, the findings of primary and secondary isotope effects in autoxidation which are similar to those observed in the analogous biosynthetic reactions suggests that, except for stereochemical control, the autoxidative and enzymatic reactions may be mechanistically similar.  相似文献   

15.
Peroxisomal biogenesis disorders (PBDs) represent a spectrum of autosomal recessive metabolic disorders that are collectively characterized by abnormal peroxisome assembly and impaired peroxisomal function. The importance of this ubiquitous organelle for human health is highlighted by the fact that PBDs are multisystemic disorders that often cause death in early infancy. Peroxisomes contribute to central metabolic pathways. Most enzymes in the peroxisomal matrix are linked to lipid metabolism and detoxification of reactive oxygen species. Proper assembly of peroxisomes and thus also import of their enzymes relies on specific peroxisomal biogenesis factors, so called peroxins with PEX being the gene acronym. To date, 13 PEX genes are known to cause PBDs when mutated. Studies of the cellular and molecular defects in cells derived from PBD patients have significantly contributed to the understanding of the functional role of the corresponding peroxins in peroxisome assembly. In this review, we discuss recent data derived from both human cell culture as well as model organisms like yeasts and present an overview on the molecular mechanism underlying peroxisomal biogenesis disorders with emphasis on disorders caused by defects in the peroxisomal matrix protein import machinery. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.  相似文献   

16.
Anthramycin, tomaymycin and sibiromycin are pyrrolo(1,4)benzodiazepine antitumor antibiotics. These compounds react with DNA and other guanine-containing polydeoxynucleotides to form covalently bound antibiotic - polydeoxynucleotide complexes. Experiments utilizing radiolabelled antibiotics have led to the following conclusions: 1. Sibiromycin reacts much faster than either anthramycin or tomaymycin with DNA. 2. At saturation binding the final antibiotic to base ratios for sibiromycin, anthramycin and tomaymycin are 1 : 8.8,1: 12.9, and 1 : 18.2, respectively. 3. No reaction with RNA or protein occurs with the pyrrolo(1,4)benzodiazepine antibiotics. 4. Sibiromycin effectively competes for the same DNA binding sites as anthramycin and tomaymycin; however, there is only partial overlap for the same binding sites between anthramycin and tomaymycin. 5. Whereas all three pyrrolo(1,4)benzodiazepine antibiotic-DNA complexes are relatively stable to alkaline conditions, their stability under acidic conditions increases in the order tomaymycin, anthramycin and sibiromycin. 6. No loss of non-exchangeable hydrogens in either the pyrrol ring or the side chains of these antibiotics occurs upon formation of their complexes with DNA. 7. Unchanged antibiotic has been demonstrated to be released upon acid treatment of the anthramycin-DNA and tomaymycin-DNA complexes. 8. A Schiff base linkage between the antibiotics and DNA has been eliminated. The comparative reactivity of the three antibiotics towards DNA and the stability of their DNA complexes is discussed in relation to their structures. A working hypothesis for the formation of the antibiotic-DNA covalent complexes is proposed based upon the available information.  相似文献   

17.
Neurosporaxanthin (β-apo-4'-carotenoic acid) biosynthesis has been studied in detail in the fungus Fusarium fujikuroi. The genes and enzymes for this biosynthetic pathway are known until the last enzymatic step, the oxidation of the aldehyde group of its precursor, β-apo-4'-carotenal. On the basis of sequence homology to Neurospora crassa YLO-1, which mediates the formation of apo-4'-lycopenoic acid from the corresponding aldehyde substrate, we cloned the carD gene of F. fujikuroi and investigated the activity of the encoded enzyme. In vitro assays performed with heterologously expressed protein showed the formation of neurosporaxanthin and other apocarotenoid acids from the corresponding apocarotenals. To confirm this function in vivo, we generated an Escherichia coli strain producing β-apo-4'-carotenal, which was converted into neurosporaxanthin upon expression of carD. Moreover, the carD function was substantiated by its targeted disruption in a F. fujikuroi carotenoid-overproducing strain, which resulted in the loss of neurosporaxanthin and the accumulation of β-apo-4'-carotenal, its derivative β-apo-4'-carotenol, and minor amounts of other carotenoids. Intermediates accumulated in the ΔcarD mutant suggest that the reactions leading to neurosporaxanthin in Neurospora and Fusarium are different in their order. In contrast to ylo-1 in N. crassa, carD mRNA content is enhanced by light, but to a lesser extent than other enzymatic genes of the F. fujikuroi carotenoid pathway. Furthermore, carD mRNA levels were higher in carotenoid-overproducing mutants, supporting a functional role for CarD in F. fujikuroi carotenogenesis. With the genetic and biochemical characterization of CarD, the whole neurosporaxanthin biosynthetic pathway of F. fujikuroi has been established.  相似文献   

18.
Polo-like kinases (Plks) perform crucial functions in cell-cycle progression and multiple stages of mitosis. Plks are characterized by a C-terminal noncatalytic region containing two tandem Polo boxes, termed the Polo-box domain (PBD), which has recently been implicated in phosphodependent substrate targeting. We show that the PBDs of human, Xenopus, and yeast Plks all recognize similar phosphoserine/threonine-containing motifs. The 1.9 A X-ray structure of a human Plk1 PBD-phosphopeptide complex shows that the Polo boxes each comprise beta6alpha structures that associate to form a 12-stranded beta sandwich domain. The phosphopeptide binds along a conserved, positively charged cleft located at the edge of the Polo-box interface. Mutations that specifically disrupt phosphodependent interactions abolish cell-cycle-dependent localization and provide compelling phenotypic evidence that PBD-phospholigand binding is necessary for proper mitotic progression. In addition, phosphopeptide binding to the PBD stimulates kinase activity in full-length Plk1, suggesting a conformational switching mechanism for Plk regulation and a dual functionality for the PBD.  相似文献   

19.
Metabolic engineering efforts require enzymes that are both highly active and specific toward the synthesis of a desired output product to be commercially feasible. The 3‐hydroxyacid (3HA) pathway, also known as the reverse β‐oxidation or coenzyme‐A‐dependent chain‐elongation pathway, can allow for the synthesis of dozens of useful compounds of various chain lengths and functionalities. However, this pathway suffers from byproduct formation, which lowers the yields of the desired longer chain products, as well as increases downstream separation costs. The thiolase enzyme catalyzes the first reaction in this pathway, and its substrate specificity at each of its two catalytic steps sets the chain length and composition of the chemical scaffold upon which the other downstream enzymes act. However, there have been few attempts reported in the literature to rationally engineer thiolase substrate specificity. In this study, we present a model‐guided, rational design study of ordered substrate binding applied to two biosynthetic thiolases, with the goal of increasing the ratio of C6/C4 products formed by the 3HA pathway, 3‐hydroxy‐hexanoic acid and 3‐hydroxybutyric acid. We identify thiolase mutants that result in nearly 10‐fold increases in C6/C4 selectivity. Our findings can extend to other pathways that employ the thiolase for chain elongation, as well as expand our knowledge of sequence–structure–function relationship for this important class of enzymes.  相似文献   

20.
Fang J  Zhang Y  Huang L  Jia X  Zhang Q  Zhang X  Tang G  Liu W 《Journal of bacteriology》2008,190(17):6014-6025
Tetrocarcin A (TCA), produced by Micromonospora chalcea NRRL 11289, is a spirotetronate antibiotic with potent antitumor activity and versatile modes of action. In this study, the biosynthetic gene cluster of TCA was cloned and localized to a 108-kb contiguous DNA region. In silico sequence analysis revealed 36 putative genes that constitute this cluster (including 11 for unusual sugar biosynthesis, 13 for aglycone formation, and 4 for glycosylations) and allowed us to propose the biosynthetic pathway of TCA. The formation of D-tetronitrose, L-amicetose, and L-digitoxose may begin with D-glucose-1-phosphate, share early enzymatic steps, and branch into different pathways by competitive actions of specific enzymes. Tetronolide biosynthesis involves the incorporation of a 3-C unit with a polyketide intermediate to form the characteristic spirotetronate moiety and trans-decalin system. Further substitution of tetronolide with five deoxysugars (one being a deoxynitrosugar) was likely due to the activities of four glycosyltransferases. In vitro characterization of the first enzymatic step by utilization of 1,3-biphosphoglycerate as the substrate and in vivo cross-complementation of the bifunctional fused gene tcaD3 (with the functions of chlD3 and chlD4) to Delta chlD3 and Delta chlD4 in chlorothricin biosynthesis supported the highly conserved tetronate biosynthetic strategy in the spirotetronate family. Deletion of a large DNA fragment encoding polyketide synthases resulted in a non-TCA-producing strain, providing a clear background for the identification of novel analogs. These findings provide insights into spirotetronate biosynthesis and demonstrate that combinatorial-biosynthesis methods can be applied to the TCA biosynthetic machinery to generate structural diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号