首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
目的: 探讨牙源性干细胞复合微渠多孔羟基磷灰石支架(grooved porous hydroxyapatite scaffolds, HAG支架)的成骨性能,为骨缺损修复治疗提供新手段。方法: 从健康成人第三磨牙中提取牙周膜干细胞(periodontal ligament stem cells, PDLSCs)及牙髓干细胞(dental pulp stem cells, DPSCs)分别接种于HAG支架上,进行多向分化鉴定及碱性磷酸酶(alkaline phosphatase,ALP)活性测定;并通过CCK-8检测细胞增殖能力;逆转录聚合酶链反应(qRT-PCR)检测骨形态发生蛋白2(bone morphogenetic protein 2, BMP-2)、骨钙素(osteocalcin, OCN)和骨桥蛋白(osteopontin, OPN)等成骨相关基因的表达。体内研究中将搭载PDLSCs和DPSCs的HAG支架移植到裸鼠的背部皮下,8周后取材,组织切片后采用苏木精-伊红(HE)染色观察新骨形成,提取组织蛋白采用Western blot检测ALP、OCN等成骨相关蛋白的表达。结果: 体外研究中DPSCs复合HAG支架组的细胞增殖能力、ALP活性,以及成骨相关基因ALPBMP2OCN等的表达均高于PDLSCs复合HAG支架组。体内研究中HE染色显示,PDLSCs复合HAG支架组及DPSCs复合HAG支架组均较空白HAG支架组有更多细胞生长区、纤维细胞增生及骨基质形成,且DPSCs复合HAG支架组的骨基质面积更大,成纤维细胞数量更多;PDLSCs复合HAG支架组及DPSCs复合HAG支架组成骨相关蛋白的表达量均高于空白HAG组,且DPSCs复合HAG支架组中ALP蛋白表达量显著高于PDLSCs复合HAG支架组。结论: PDLSCs、DPSCs复合HAG支架在体内外均表现出良好的成骨性能,其中DPSCs复合HAG支架的成骨性能更为优异。  相似文献   

2.
3.
Tissue engineering utilizing periodontal ligament stem cells (PDLSCs) has recently been proposed for the development of new periodontal regenerative therapies. Although the use of autologous PDLSC transplantation eliminates the potential of a significant host immune response against the donor cells, it is often difficult to generate enough PDLSCs from one donor source due to the variation of stem cell potential between donors and disease state of each patient. In this study, we examined the immunomodulatory properties of PDLSCs as candidates for new allogeneic stem cell‐based therapies. Human PDLSCs displayed cell surface marker characteristics and differentiation potential similar to bone marrow stromal stem cells (BMSSCs) and dental pulp stem cells (DPSCs). PDLSCs, BMSSCs, and DPSCs inhibited peripheral blood mononuclear cell (PBMNC) proliferation stimulated with mitogen or in an allogeneic mixed lymphocyte reaction (MLR). Interestingly, gingival fibroblasts (GFs) also suppressed allogeneic PBMNC proliferation under both assay conditions. PDLSCs, BMSSCs, DPSCs, and GFs exhibited non‐cell contact dependent suppression of PBMNC proliferation in co‐cultures using transwells. Furthermore, conditioned media (CM) derived from each cell type pretreated with IFN‐γ partially suppressed PBMNC proliferation when compared to CMs without IFN‐γ stimulation. In all of these mesenchymal cell types cultured with activated PBMNCs, the expression of TGF‐β1, hepatocyte growth factor (HGF) and indoleamine 2, 3‐dioxygenase (IDO) was upregulated while IDO expression was upregulated following stimulation with IFN‐γ. These results suggest that PDLSCs, BMSSCs, DPSCs, and GFs possess immunosuppressive properties mediated, in part, by soluble factors, produced by activated PBMNCs. J. Cell. Physiol. 219: 667–676, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
Recently, extracted teeth have been identified as a viable source of stem cells for tissue regenerative approaches. Current expansion of these cells requires incorporation of animal sera; yet, a fundamental issue underlying cell cultivation methods for cell therapy regards concerns in using animal sera. In this study, we investigated the development of a chemically defined, serum‐free media (K‐M) for the expansion of human periodontal ligament stem cells (PDLSCs) and human stem cells from exfoliated deciduous teeth (SHEDs). Proliferation assays were performed comparing cells in serum‐containing media (FBS‐M) with cells cultured in four different serum‐free medium and these demonstrated that in these medium, the cell proliferation of both cell types was significantly less than the proliferation of cells in FBS‐M. Additional proliferation assays were performed using pre‐coated fibronectin (FN) tissue culture plates and of the four serum‐free medium, only K‐M enabled PDLSCs and SHEDs to proliferate at higher rates than cells cultured in FBS‐M. Next, alkaline phosphatase activity showed that PDLSCs and SHEDs exhibited similar osteogenic potential whether cultured in K‐M or FBS‐M, and, additionally, cells retained their multipotency in K‐M as seen by expression of chondrogenic and adipogenic genes, and positive Von Kossa, Alcian blue, and Oil Red O staining. Finally, differential expression of 84 stem cell associated genes revealed that for most genes, PDLSCs and SHEDs did not differ in their expression regardless of whether cultured in K‐M or FBS‐M. Taken together, the data suggest that K‐M can support the expansion of PDLSCs and SHEDs and maintenance of their multipotency. J. Cell. Physiol. 226: 66–73, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
7.
This article is a scoping review of the studies that assessed the effect of mechanical forces on the behavior of dental stem cells (DSCs). PubMed and Scopus searches were done for in-vitro studies evaluating the effect of tension, hydrostatic pressure (i.e., the pressure applied through an incompressible fluid), compression, simulated microgravity, and vibration on DSCs. The following factors were analyzed: osteogenic/odontogenic differentiation, proliferation, adhesion and migration. Articles were reviewed according to the Preferred Reporting Items for Systematic Reviews extension for scoping reviews (PRISMA-ScR) guideline. Included studies were evaluated based on the modified Consolidated Standards of Reporting Trials (CONSORT). A total of 18 studies published from 2008–2019 were included. Nine studies were focusing on Periodontal ligament Stem Cells (PDLSCs), eight studies on Dental Pulp Stem Cells (DPSCs) and one study on Stem Cells from Apical Papilla (SCAP). Results showed that tension, three-dimensional stress and simulated microgravity promoted the proliferation and osteogenic differentiation of PDLSCs. DPSCs proliferation increased after microgravity and tension exertion. In addition, dynamic hydrostatic pressure and compression promoted odontogenic differentiation of DPSCs. Besides, mechanical stimuli increased the osteogenic differentiation of DPSCs. One study analyzed the effect of carrier features on the response of DSCs to 3D-stress and showed that cells cultivated on scaffolds with 30% bioactive glass (BAG) had the highest osteogenic differentiation compared to other ratios of BAG. It has been shown that increasing the duration of tension (i.e., from 3 h to 24 h force application) enhanced the positive effect of force application on the osteogenic differentiation of DSCs. In conclusion, all types of mechanical forces except uniaxial tension increased the osteogenic/odontogenic differentiation of DSCs. In addition, the effect of mechanical stimulation on the proliferation of DSCs differs based on the type of stem cells and mechanical force.  相似文献   

8.
Periodontal ligament stem cells (PDLSCs) have mesenchymal-stem-cells-like qualities, and are considered as one of the candidates of future clinical application in periodontal regeneration therapy. Enamel matrix derivative (EMD) is widely used in promoting periodontal regeneration. However, the effects of EMD on the proliferation and osteogenic differentiation of human PDLSCs grown on the Ti implant surface are still no clear. Therefore, this study examined the effects of EMD on human PDLSCs in vitro. Human PDLSCs were isolated from healthy participants, and seeded on the surface of Ti implant disks and stimulated with various concentrations of EMD. Cell proliferation was determined with Cell Counting Kit-8 (CCK-8). The osteogenic differentiation of PDLSCs was evaluated by the measurement of alkaline phosphatase (ALP) activity, Alizarin red staining, and real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. The results indicated that EMD at concentrations (5–60 µg/ml) increased the viability and proliferation of PDLSCs. The treatment with 30 and 60 µg/ml of EMD significantly elevated ALP activity, augmented mineralized nodule formation and calcium deposition, and upregulated the mRNA and protein levels of Runx-2 and osteocalcin (OCN) in the PDLSCs grown on the Ti surface. Further investigation found that EMD treatment did not change the protein levels of phosphatidylinositol-3-kinase (PI3K), p-PI3K, Akt and mTOR, but significantly upregulated the phosphorylated levels of Akt and mTOR. Collectively, these results suggest that EMD stimulation can promote the proliferation and osteogenic differentiation of PDLSCs grown on Ti surface, which is possibly associated with the activation of Akt/mTOR signaling pathway.  相似文献   

9.
10.
11.
Periodontitis is one of the main causes of tooth loss and has been confirmed as the sixth complication of diabetes. Metformin promotes the osteogenic differentiation of stem cells. Periodontal ligament stem cells (PDLSCs) are the best candidate stem cells for periodontal tissue regeneration. Herein, we aimed to identify the effects of metformin on the proliferation, migration, and osteogenic differentiation of PDLSCs in vitro. PDLSCs were isolated by limiting dilution, and their characteristics were assessed by colony formation assay and flow cytometry. Cell counting and migration assays were used to investigate the effects of metformin on proliferation and migration. The osteogenic differentiation ability of PDLSCs was detected by alkaline phosphatase (ALP) activity and Alizarin Red S staining. Gene and protein levels of osteogenesis‐related markers were determined by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot analysis, respectively. Metformin treatment at 10 μM did not affect PDLSC proliferation, while at 50 and 100 μM, metformin time‐dependently enhanced PDLSC proliferation and significantly increased cell numbers after 5 and 7 days of stimulation (P < 0.05). In addition, 50 μM metformin exhibited a maximal effect on migration, ALP activity, and mineral deposition (P < 0.05). Furthermore, 50 μM metformin significantly upregulated the gene expression levels of ALP, BSP, OPN, OCN, and Runx2 and the protein expression of ALP and Runx2 (P < 0.05). In summary, our study confirms that metformin facilitates the proliferation, migration, and osteogenic differentiation of PDLSCs in vitro and could be used as a new strategy for periodontal tissue regeneration.  相似文献   

12.
Clinically reported reparative benefits of mesenchymal stromal cells (MSCs) are majorly attributed to strong immune‐modulatory abilities not exactly shared by fibroblasts. However, MSCs remain heterogeneous populations, with unique tissue‐specific subsets, and lack of clear‐cut assays defining therapeutic stromal subsets adds further ambiguity to the field. In this context, in‐depth evaluation of cellular characteristics of MSCs from proximal oro‐facial tissues: dental pulp (DPSCs) and periodontal ligament (PDLSCs) from identical donors provides an opportunity to evaluate exclusive niche‐specific influences on multipotency and immune‐modulation. Exhaustive cell surface profiling of DPSCs and PDLSCs indicated key differences in expression of mesenchymal (CD105) and pluripotent/multipotent stem cell–associated cell surface antigens: SSEA4, CD117, CD123 and CD29. DPSCs and PDLSCs exhibited strong chondrogenic potential, but only DPSCs exhibited adipogenic and osteogenic propensities. PDLSCs expressed immuno‐stimulatory/immune‐adhesive ligands like HLA‐DR and CD50, upon priming with IFNγ, unlike DPSCs, indicating differential response patterns to pro‐inflammatory cytokines. Both DPSCs and PDLSCs were hypo‐immunogenic and did not elicit robust allogeneic responses despite exposure to IFNγ or TNFα. Interestingly, only DPSCs attenuated mitogen‐induced lympho‐proliferative responses and priming with either IFNγ or TNFα enhanced immuno‐modulation capacity. In contrast, primed or unprimed PDLSCs lacked the ability to suppress polyclonal T cell blast responses. This study indicates that stromal cells from even topographically related tissues do not necessarily share identical MSC properties and emphasizes the need for a thorough functional testing of MSCs from diverse sources with respect to multipotency, immune parameters and response to pro‐inflammatory cytokines before translational usage.  相似文献   

13.
Human craniofacial stem cells are recently discovered sources of putative mesenchymal stem cells that hold great promise for autogenic or allogenic cell therapy and tissue engineering. Prior to employing these cells in clinical applications, they must be thoroughly investigated and characterized. In this study, the surface marker expression was investigated on dental pulp stem cells (DPSCs), dental follicle cells (DFCs), periodontal ligament stem cells (PDLSCs), and buccal mucosa fibroblasts (BMFs) utilising surface markers for flow cytometry. The osteogenic potential was also examined by bone-associated markers alkaline phosphatase, Runx2, collagen type I, osteocalcin, and osteopontin. The results from our study demonstrate that the dental cell sources exhibit comparable surface marker and bone-associated marker profiles parallel to those of other mesenchymal stem cell sources, yet distinct from the buccal mucosa fibroblasts. Our data support evidence towards clinical applicability of dental stem cells in hard tissue regeneration.  相似文献   

14.
15.
16.
17.
18.
The selective in vitro expansion and differentiation of multipotent stem cells are critical steps in cell‐based regenerative therapies, while technical challenges have limited cell yield and thus affected the success of these potential treatments. The Rho GTPases and downstream Rho kinases are central regulators of cytoskeletal dynamics during cell cycle and determine the balance between stem cells self‐renewal, lineage commitment and apoptosis. Trans‐4‐[(1R)‐aminoethyl]‐N‐(4‐pyridinyl)cylohexanecarboxamidedihydrochloride (Y‐27632), Rho‐associated kinase (ROCK) inhibitor, involves various cellular functions that include actin cytoskeleton organization, cell adhesion, cell motility and anti‐apoptosis. Here, human periodontal ligament stem cells (PDLSCs) were isolated by limiting dilution method. Cell counting kit‐8 (CCK8), 5‐ethynyl‐2′‐deoxyuridine (EdU) labelling assay, cell apoptosis assay, cell migration assay, wound‐healing assay, alkaline phosphatase (ALP) activity assay, Alizarin Red S staining, Oil Red O staining, quantitative real‐time polymerase chain reaction (qRT‐PCR) were used to determine the effects of Y‐27632 on the proliferation, apoptosis, migration, stemness, osteogenic and adipogenic differentiation of PDLSCs. Afterwards, Western blot analysis was performed to elucidate the mechanism of cell proliferation. The results indicated that Y‐27632 significantly promoted cell proliferation, chemotaxis, wound healing, fat droplets formation and pluripotency, while inhibited ALP activity and mineral deposition. Furthermore, Y‐27632 induced PDLSCs proliferation through extracellular‐signal‐regulated kinase (ERK) signalling cascade. Therefore, control of Rho‐kinase activity may enhance the efficiency of stem cell‐based treatments for periodontal diseases and the strategy may have the potential to promote periodontal tissue regeneration by facilitating the chemotaxis of PDLSCs to the injured site, and then enhancing the proliferation of these cells and maintaining their pluripotency.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号