首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although p120-catenin (p120) is crucial for E-cadherin function, ablation experiments in epithelial tissues from different organ systems reveal markedly different effects. Here, we examine for the first time the consequences of p120 knockout during mouse mammary gland development. An MMTV-Cre driver was used to target knockout to the epithelium at the onset of puberty. p120 ablation was detected in approximately one-quarter of the nascent epithelium at the forth week post-partum. However, p120 null cells were essentially nonadherent, excluded from the process of terminal end bud (TEB) morphogenesis and lost altogether by week six. This elimination process caused a delay in TEB outgrowth, after which the gland developed normally from cells that had retained p120. Mechanistic studies in vitro indicate that TEB dysfunction is likely to stem from striking E-cadherin loss, failure of cell-cell adhesion and near total exclusion from the collective migration process. Our findings reveal an essential role for p120 in mammary morphogenesis.  相似文献   

2.
E-cadherin, the primary epithelial adherens junction protein, has been implicated as playing a critical role in nucleating formation of adherens junctions, tight junctions, and desmosomes. In addition to its role in maintaining structural tissue integrity, E-cadherin has also been suggested as an important modulator of cell signaling via interactions with its cytoplasmic binding partners, catenins, as well as with growth factor receptors. Therefore, we proposed that loss of E-cadherin from the developing mouse intestinal epithelium would disrupt intestinal epithelial morphogenesis and function. To test this hypothesis, we used a conditional knockout approach to eliminate E-cadherin specifically in the intestinal epithelium during embryonic development. We found that E-cadherin conditional knockout mice failed to survive, dying within the first 24 hours of birth. Examination of intestinal architecture at E18.5 demonstrated severe disruption to intestinal morphogenesis in animals lacking E-cadherin in the epithelium of the small intestine. We observed changes in epithelial cell shape as well as in the morphology of villi. Although junctional complexes were evident, junctions were abnormal, and barrier function was compromised in E-cadherin mutant intestine. We also identified changes in the epithelial cell populations present in E-cadherin conditional knockout animals. The number of proliferating cells was increased, whereas the number of enterocytes was decreased. Although Wnt/β-catenin target mRNAs were more abundant in mutants compared with controls, the amount of nuclear activated β-catenin protein was dramatically lower in mutants compared with controls. In summary, our data demonstrate that E-cadherin is essential for intestinal epithelial morphogenesis and homeostasis during embryonic development.  相似文献   

3.
E-cadherin, a central component of the adherens junction (AJ), is a single-pass transmembrane protein that mediates cell–cell adhesion. The loss of E-cadherin surface expression, and therefore cell–cell adhesion, leads to increased cell migration and invasion. Treatment of colorectal cancer (CRC)-derived cells (SW-480 and HT-29) with 2.0 mM metformin promoted a redistribution of cytosolic E-cadherin to de novo formed puncta along the length of the contacting membranes of these cells. Metformin also promoted translocation from the cytosol to the plasma membrane of p120-catenin, another core component of the AJs. Furthermore, E-cadherin and p120-catenin colocalized with β-catenin at cell–cell contacts. Western blot analysis of lysates of CRC-derived cells revealed a substantial metformin-induced increase in the level of p120-catenin as well as E-cadherin phosphorylation on Ser838/840, a modification associated with β-catenin/E-cadherin interaction. These modifications in E-cadherin, p120-catenin and β-catenin localization suggest that metformin induces rebuilding of AJs in CRC-derived cells. Those modifications were accompanied by the inhibition of focal adhesion kinase (FAK), as revealed by a significant decrease in the phosphorylation of FAK at Tyr397 and paxillin at Tyr118. These changes were associated with a reduction in the numbers, but an increase in the size, of focal adhesions and by the inhibition of cell migration. Overall, these observations indicate that metformin targets multiple pathways associated with CRC development and progression.  相似文献   

4.
Over the past decade, the exact function of p120-catenin in regulation of E-cadherin/catenins complex has remained particularly controversial. We have previously reported that E-cadherin-mediated adhesion is tightly regulated by tyrosine phosphorylation of catenins. However, this effect is not observed in human colon carcinoma cell line Caco-2. Here, we have generated inducible Caco-2 clones that display p120Cas1B, a p120-catenin isoform poorly expressed by these cells. As a result, neither expression of the transgene nor tyrosine phosphorylation of catenins induces redistribution of E-cadherin to the cytosol and disassembly of adherens and tight junctions. In contrast, E-cadherin appears markedly increased reinforcing cell-cell adhesion. Interestingly, a substantial decrease in p120-catenin levels is found in MDCK cells expressing Snail, in which E-cadherin expression is strongly inhibited. Additionally, we show that the specific depletion of p120-catenin decreases cell-cell contacts, and increases cell motility and scattering of colonies established by HT-29 M6 cells. Together our results corroborate that p120-catenin plays an essential role in the maintenance of the required E-cadherin protein levels that prevent the loss of epithelial characteristics occurred during tumorigenesis.  相似文献   

5.
E-cadherin is a member of the cadherin family of Ca2+-dependent cell-cell adhesion molecules. p120-Catenin and δ-catenin are known to bind to similar juxtamembrane regions of E-cadherin, and p120-catenin is known to stabilize E-cadherin. However, the function of competition between p120-catenin and δ-catenin for E-cadherin has not been fully explained. In this report, we show that cells overexpressing δ-catenin contain less p120-catenin than control cells at the cell-cell interface and that this causes the relocalization of p120-catenin from the plasma membrane to the cytosol. We show that successful binding by one to E-cadherin adversely affects the stability of the other.  相似文献   

6.
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a negative regulator of phosphatidylinositol 3-kinase (PI3K) signaling that is frequently inactivated in colorectal cancer through mutation, loss of heterozygosity, or epigenetic mechanisms. The aim of this study was to determine the effect of intestinal-specific PTEN inactivation on intestinal epithelial homeostasis and tumorigenesis. PTEN was deleted specifically in the intestinal epithelium, by crossing PTEN(Lox/Lox) mice with villin(Cre) mice. PTEN was robustly expressed in the intestinal epithelium and maximally in the differentiated cell compartment. Targeted inactivation of PTEN in the intestinal epithelium of PTEN(Lox/Lox)/villin(Cre) mice was confirmed by genotyping, immunohistochemistry, and qPCR. While intestinal-specific PTEN deletion did not have a major effect on cell fate determination or proliferation in the small intestine, it did increase phosphorylated (p) protein kinase B (AKT) expression in the intestinal epithelium, and 19% of animals developed small intestinal adenomas and adenocarcinomas at 12 mo of age. These tumors demonstrated pAKT and nuclear β-catenin staining, indicating simultaneous activation of the PI3K/AKT and Wnt signaling pathways. These findings demonstrate that, while PTEN inactivation alone has a minimal effect on intestinal homeostasis, it can facilitate tumor promotion upon deregulation of β-catenin/TCF signaling, further establishing PTEN as a bona fide tumor suppressor gene in intestinal cancer.  相似文献   

7.
8.
Tight regulation of cadherin-mediated intercellular adhesions is critical to both tissue morphogenesis during development and tissue homeostasis in adults. Cell surface expression of the cadherin-catenin complex is often directly correlated with the level of adhesion, however, examples exist where cadherin appears to be inactive and cells are completely non-adhesive. The state of p120-catenin phosphorylation has been implicated in regulating the adhesive activity of E-cadherin but the mechanism is currently unclear. We have found that destabilization of the microtubule cytoskeleton, independent of microtubule plus-end dynamics, dephosphorylates p120-catenin and activates E-cadherin adhesion in Colo 205 cells. Through chemical screening, we have also identified several kinases as potential regulators of E-cadherin adhesive activity. Analysis of several p120-catenin phosphomutants suggests that gross dephosphorylation of p120-catenin rather than that of specific amino acids may trigger E-cadherin adhesion. Uncoupling p120-catenin binding to E-cadherin at the membrane causes constitutive adhesion in Colo 205 cells, further supporting an inhibitory role of phosphorylated p120-catenin on E-cadherin activity.  相似文献   

9.
10.
11.
12.
β-连环蛋白(β-catenin)是一种胞内糖蛋白,具有双重功能。一是作为附着连接的组成部分,与钙黏蛋白结合形成复合体参与细胞间连接;二是作为信号分子,是Wnt信号途径的重要环节,在胚胎发育和肿瘤发生中起重要作用。β-catenin选择何种途径发挥作用,与不同配体竞争性结合密切相关。目前已经证实β-catenin Y142位点酪氨酸磷酸化是决定β-catenin功能的关键调控点,而E—cadherin、Left、APC和α-catenin均参与β—catenin活性的调节,对细胞的命运有着重要影响。  相似文献   

13.
Abstract

The metamorphosis of Rhinella arenarum was induced precociously for 5 days, then blocked for 3 months to evaluate the role of thyroid hormones as modulators of morphoregulatory molecules such as E-cadherin, and β- and α-catenin during epithelium remodeling. We then performed an immunohistochemical and morphometric study of these molecules in the larval stomach. We show that 3,5,3′-triiodothyronine exerts a positive regulatory effect on E-cadherin and β- and α-catenin expression in stomach epithelium. This suggests continuous synthesis of E-cadherin, and β- and α-catenin; synthesis essentially is thyroid hormone-independent during premetamorphosis and early prometamorphosis, but it becomes thyroid hormone-dependent during metamorphic climax.  相似文献   

14.
p120 catenin is thought to be a key regulator of E-cadherin function and stability, but its role(s) in vivo is poorly understood. To examine these directly, we generated a conditional p120 knockout mouse and targeted p120 ablation to the embryonic salivary gland. Surprisingly, acinar differentiation is completely blocked, resulting in a gland composed entirely of ducts. Moreover, p120 ablation causes E-cadherin deficiency in vivo and severe defects in adhesion, cell polarity, and epithelial morphology. These changes closely phenocopy high-grade intraepithelial neoplasia, a condition that, in humans, typically progresses to invasive cancer. Tumor-like protrusions appear immediately after p120 ablation at e14 and expand into the lumen until shortly after birth, at which time the animals die with completely occluded glands. The data reveal an unexpected role for p120 in salivary acinar development and show that p120 ablation by itself induces effects consistent with a role in tumor progression.  相似文献   

15.
Hartsock A  Nelson WJ 《PloS one》2012,7(5):e37476
p120-Catenin binding to, and Hakai-mediated ubiquitination of the E-cadherin juxtamembrane domain (JMD) are thought to be involved in regulating E-cadherin internalization and degradation. However, the relationship between these two pathways is not understood. We targeted the E-cadherin JMD to mitochondria (WT-JMD) to isolate this domain from the plasma membrane and internalization, and to examine protein modifications and degradation. WT-JMD localized to mitochondria, but did not accumulate there except when proteasome activity was inhibited. We found WT-JMD was ubiquitinated, and arginine substitution of lysines at position 5 (K5R) and 83 (K83R) resulted in the stable accumulation of mutant JMD at mitochondria. p120-Catenin did not localize, or bind to WT-JMD even upon proteasome inhibition, whereas the K5,83R-JMD mutant bound and localized p120-catenin to mitochondria. Mutation of the p120-catenin binding site in combination with these lysine mutations inhibited p120-catenin binding, but did not decrease JMD stability or its accumulation at mitochondria. Thus, increased stability of JMD lysine mutants was due to inhibition of ubiquitination and not to p120-catenin binding. Finally, mutation of these critical lysines in full length E-cadherin had similar effects on protein stability as WT-JMD. Our results indicate that ubiquitination of the JMD inhibits p120-catenin binding, and targets E-cadherin for degradation.  相似文献   

16.
Yu J  Miao Y  Xu H  Liu Y  Jiang G  Stoecker M  Wang E  Wang E 《PloS one》2012,7(5):e37008
P120-catenin (p120ctn) exerts important roles in regulating E-cadherin and invasiveness in cancer cells. However, the mechanisms by which p120ctn isoforms 1 and 3 modulate E-cadherin expression are poorly understood. In the current study, HBE, H460, SPC and LTE cell lines were used to examine the effects of p120ctn isoforms 1A and 3A on E-cadherin expression and cell invasiveness. E-cadherin was localized on the cell membrane of HBE and H460 cells, while it was confined to the cytoplasm in SPC and LTE cells. Depletion of endogenous p120ctn resulted in reduced E-cadherin expression; however, p120ctn ablation showed opposite effects on invasiveness in the cell lines by decreasing invasiveness in SPC and LTE cells and increasing it in HBE and H460 cells. Restitution of 120ctn isoform 1A restored E-cadherin on the cell membrane and blocked cell invasiveness in H460 and HBE cells, while it restored cytoplasmic E-cadherin and enhanced cell invasiveness in SPC and LTE cells. P120ctn isoform 3A increased the invasiveness in all four cell lines despite the lack of effect on E-cadherin expression, suggesting a regulatory pathway independent of E-cadherin. Moreover, five p120ctn isoform 1A deletion mutants were constructed and expressed in H460 and SPC cells. The results showed that only the M4 mutant, which contains N-terminal 1-54 amino acids and the Armadillo repeat domain, was functional in regulating E-cadherin and cell invasiveness, as observed in p120ctn isoform 1A. In conclusion, the N-terminal 1-54 amino acid sequence and Armadillo repeat domain of p120ctn isoform 1A are indispensable for regulating E-cadherin protein. P120ctn isoform 1A exerts opposing effects on cell invasiveness, corresponding to the subcellular localization of E-cadherin.  相似文献   

17.
The binding of p120-catenin and β-catenin to the cytoplasmic domain of E-cadherin establishes epithelial cell-cell adhesion. Reduction and loss of catenin expression degrades E-cadherin-mediated carcinoma cell-cell adhesion and causes carcinomas to progress into aggressive states. Since both catenins are differentially regulated and play distinct roles when they dissociate from E-cadherin, evaluation of their expression, subcellular localization and the correlation with E-cadherin expression are important subjects. However, the same analyses are not readily performed on squamous cell carcinomas in which E-cadherin expression determines the disease progression. In the present study, we examined expression and subcellular localization of p120-catenin and β-catenin in oral carcinomas (n = 67) and its implications in the carcinoma progression and E-cadherin expression using immunohitochemistry. At the invasive front, catenin-membrane-positive carcinoma cells were decreased in the dedifferentiated (p120-catenin, P < 0.05; β-catenin, P < 0.05) and invasive carcinomas (p120-catenin, P < 0.01; β-catenin, P < 0.05) and with the E-cadherin staining (p120-catenin, P < 0.01; β-catenin, P < 0.01). Carcinoma cells with β-catenin cytoplasmic and/or nuclear staining were increased at the invasive front compared to the center of tumors (P < 0.01). Although the p120-catenin isoform shift from three to one associates with carcinoma progression, it was not observed after TGF-β, EGF or TNF-α treatments. The total amount of p120-catenin expression was decreased upon co-treatment of TGF-β with EGF or TNF-α. The above data indicate that catenin membrane staining is a primary determinant for E-cadherin-mediated cell-cell adhesion and progression of oral carcinomas. Furthermore, it suggests that loss of p120-catenin expression and cytoplasmic localization of β-catenin fine-tune the carcinoma progression.  相似文献   

18.
β-连环蛋白:卵巢癌治疗的新靶点   总被引:1,自引:1,他引:1  
卵巢癌是致死率最高的妇科肿瘤,早期不易发现。常规手术及放化疗均难以明显提高患者的远期生存率,因此寻求新的治疗方法迫在眉睫。β-连环蛋白(β-catenin)作为E-cadherin(E-钙调蛋白)/β-连环蛋白系统和Wnt信号通路中的关键分子,在多种肿瘤的发生、发展过程中起着重要作用。我们主要阐述了β-连环蛋白在各类卵巢癌中的表达情况及针对β-连环蛋白分子的一些靶向治疗手段。  相似文献   

19.
Regulation of E-cadherin/Catenin association by tyrosine phosphorylation   总被引:28,自引:0,他引:28  
Alteration of cadherin-mediated cell-cell adhesion is frequently associated to tyrosine phosphorylation of p120- and beta-catenins. We have examined the role of this modification in these proteins in the control of beta-catenin/E-cadherin binding using in vitro assays with recombinant proteins. Recombinant pp60(c-src) efficiently phosphorylated both catenins in vitro, with stoichiometries of 1.5 and 2.0 mol of phosphate/mol of protein for beta-catenin and p120-catenin, respectively. pp60(c-src) phosphorylation had opposing effects on the affinities of beta-catenin and p120 for the cytosolic domain of E-cadherin; it decreased (in the case of beta-catenin) or increased (for p120) catenin/E-cadherin binding. However, a role for p120-catenin in the modulation of beta-catenin/E-cadherin binding was not observed, since addition of phosphorylated p120-catenin did not modify the affinity of phosphorylated (or unphosphorylated) beta-catenin for E-cadherin. The phosphorylated Tyr residues were identified as Tyr-86 and Tyr-654. Experiments using point mutants in these two residues indicated that, although Tyr-86 was a better substrate for pp60(c-src), only modification of Tyr-654 was relevant for the interaction with E-cadherin. Transient transfections of different mutants demonstrated that Tyr-654 is phosphorylated in conditions in which adherens junctions are disrupted and evidenced that binding of beta-catenin to E-cadherin in vivo is controlled by phosphorylation of beta-catenin Tyr-654.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号