首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of our paper was to investigate whether single olfactory receptor neurons (ORNs) of the spiny lobster Panulirus argus functionally express more than one type of receptor, examine the consequences of this on coding of mixtures, and compare principles of odorant mixture coding by spiny lobsters with that by the channel catfish, which has been studied extensively using the same experimental and analytical procedures (Caprio et al. 1989; Kang and Caprio 1991). We examined responses of individual taurine-sensitive ORNs to binary mixtures of excitatory compounds, either competitive agonists (taurine, β-alanine, hypotaurine) or non-competitive agonists (taurine, l-glutamate, ammonium chloride, adenosine-5′-monophosphate). Responses to mixtures were compared to two indices: mixture discrimination index (MDI) and independent component index (ICI). Binary mixtures of competitive agonists had MDI values close to 1.0, as expected for competitors. Mixtures of non-competitive agonists had ICI values averaging 0.83, indicating the effects of the components are not independent. We conclude that individual olfactory cells of spiny lobsters can express more than one type of receptor mediating excitation, one of which typically has a much higher density or affinity, and that spiny lobster and catfish olfactory cells encode mixtures of two excitatory agonists using similar rules. Accepted: 20 December 1996  相似文献   

2.
We used spiny lobsters (Panulirus argus) in a discriminationlearning procedure with aversive conditioning to examine theirbehavioral discrimination of adenosine-5'-monophosphate (AMP),betaine, L-cysteine and their binary mixtures. Our results showthat spiny lobsters can clearly discriminate among binary mixturesand their components. Lobsters aversively conditioned to avoidresponding to a binary mixture continued to respond to thatmixture's components, and lobsters that were aversively conditionedto avoid responding to a compound tended to continue to respondto binary mixtures containing that compound. Thus, responsesof conditioned lobsters to binary mixtures were not usuallyintermediate between the responses to the mixtures' components,which might be expected for response-matched compounds. Thisresult might arise from any of several factors. First, it mightresult from mixture interactions in the peripheral olfactorysystem, if the responses of olfactory receptor neurons to onecomponent of a binary mixture were suppressed by the other component,making the response to the mixture more similar to the suppressingcomponent. Electrophysiological data from a population of 50singly-recorded olfactory receptor neurons (Daniel and Derby,1994) do not consistently support this idea. A second possiblereason for the behavioral response to a binary mixture not beingintermediate between the responses to its components involveshigher order processing, such as mixture interactions generatedin olfactory interneurons in the CNS (which is known to occur:Derby et al., 1985; Ache, 1989), configural learning or associativeprocessing.  相似文献   

3.
Information on steroid hormones and fatty acids that play roles in lobster reproduction is still very limited although the data are indispensable to seed production in hatchery. The study was designed to identify steroid hormones and fatty acids during gonadal maturation of spiny lobster (Panulirus homarus). Male spiny lobsters were treated with and without thyroxine injection. Female spiny lobsters were treated with and without eyestalk ablations during mature and immature gonad developments. Androst-5-en-17-one,3β (androst) and estran-3-one,17β (estran), two steroid hormones were identified at different levels of gonadal maturity of spiny lobsters. High concentrations of androst and estran were detected in the male spiny lobsters treated with thyroxine injections. Estran showed high concentrations in female brood stock of spiny lobsters during oogenesis stages both without eyestalk ablation and with ablation of one or two eyestalks, except in the immature female gonads. It was found that stearic acid was the highest and dominant fatty acid in mature male spiny lobster. Stearic acid, oleic acid, palmitic acid and caprylic acid were fatty acids with high concentrations in immature and mature female spiny lobsters. After 30 days in captivity, only stearic acid and oleic acid were found dominantly in eyestalk ablated mature female spiny lobsters.  相似文献   

4.
One major form of cytochrome P450 has been isolated from the hepatopancreas of untreated spiny lobsters, Panulirus argus. This form, termed here D1, was purified to a specific content of 12.1 +/- 1.8 nmol/mg protein. Two minor forms, termed D2 and D3 were partially purified to 4.6 +/- 1.6 and 2.3 +/- 0.2 nmol P450/mg protein, respectively. No NADPH-cytochrome P450 reductase activity was detected in spiny lobster hepatopancreas microsomes and no purification of spiny lobster reductase was achieved in this study. Very low NADPH-cytochrome c reductase activity was found in hepatopancreas microsomes and also in cytosol. Indirect evidence suggested that proteolysis of spiny lobster P450 reductase during the preparation of hepatopancreas microsomes may in part account for the lack of detectable monooxygenase activity in hepatopancreas microsomes. The catalytic activities of the D1 or D2 forms of spiny lobster P450 were measured by mixing D1 or D2 with NADPH-cytochrome P450 reductase isolated from pig or rat liver microsomes. D2 was very efficient in demethylating benzphetamine, with a turnover number of 122 per minute, and D1 was an efficient catalyst of progesterone 16 alpha-hydroxylation, with a turnover number of 43 per minute. Other good substrates for D1 and D2 forms were aminopyrine, testosterone, benzo(a)pyrene, and 7-ethoxycoumarin. Little activity was found with methyl-, ethyl-, pentyl-, or benzyl-phenoxazone ethers as substrates. The profile of metabolites formed by D1 or D2 with benzo(a)pyrene as substrate were more similar to those formed with uninduced rat liver microsomes than to those formed by liver microsomes from uninduced flatfish species.  相似文献   

5.
There is mounting evidence that mixture interactions resultin a physiological response that is different from that predictedfrom observed responses to individual mixture components. Mixtureinteractions that act to alter the neural coding of mixtureintensity (intensity mixture interactions) or quality (patternmixture interactions) may ultimately lead to dramatic differencesbetween the perceived intensities and qualities of a mixtureand its components. These perceptions could be expressed andobserved at the behavioral level. Toward examining this question,we have tested the ability of the Florida spiny lobster (Panulirusargus) to behaviorally discriminate between three odorant compounds[adenosine 5'-monophosphate (AMP), L-glutamate (Glu), and taurine(Tau)] and their binary mixtures through the use of a differentialaversive associative conditioning paradigm. Six groups of lobsterswere used, each being conditioned to avoid one of the singlecompounds or binary mixtures. Behavioral expression of intensitymixture interactions was evident. Preconditioning response magnitudesto binary mixtures were either less than those to their components(e.g. AMP + Glu) or less than predicted from responses to theircomponents (e.g. AMP + Tau). Behavioral expression of patternmixture interactions was also observed. Relationships betweenthe quality of each binary mixture and the qualities of themixture's components were determined from the results of analysisof variance and multidimensional scaling analysis. Analysesincorporated observed responses to all stimuli and ‘predicted’responses to the binary mixtures. Lobsters easily discriminatedbetween the qualities of AMP, Glu and Tau. The quality of themixture of AMP + Glu was different from either component aswell as from the predicted value for this mixture. The mixtureof AMP + Tau was intermediate between both components and wassimilar to the predicted value. The mixture of Glu + Tau, whilemore similar to Glu than to Tau, was different from the predictedvalue, and there was some indication that the Glu was actingto suppress the response to Tau. Behavioral results for AMP+ Tau, which suggest no pattern mixture interactions betweenthese compounds, are in accordance with results of recentlyconducted binding assays which indicate independent receptorsfor these compounds (Olson et al., 1992). Results, especiallyfor AMP + Glu and Glu + Tau, are consistent with results ofour electrophysiological analysis of the effects of patternmixture interactions on coding of stimulus quality and intensityby olfactory receptor cells (Derby et al., 1991a,b). This providesfurther evidence for the effects of peripherally initiated mixtureinteractions on the coding and perception of the quality ofodorant mixtures. 1Present address: Departments of Psychology and Biology, GeorgiaState University, University Plaza, Atlanta, Georgia 30303,USA  相似文献   

6.
Responses of olfactory receptor neurons of spiny lobsters Panulirus argus to two-component mixtures can be shaped by inhibitory events such as odor-activated hyperpolarizations and inhibition of odor-receptor binding (Daniel et al. 1996). In the current study, we extend this analysis to complex mixtures by examining responses of spiny lobster olfactory receptor neurons to mixtures containing up to seven odorants, consisting of adenosine-5′-monophosphate, ammonium, betaine, l-cysteine, l-glutamate, dl-succinate, and taurine. The response to a mixture was often less than the response to its most excitatory component. The effect of adding an excitatory odorant to a mixture depended on olfactory receptor neuron type, composition of the mixture, and which compound was added. In some cases the added excitatory compound had no effect or even decreased the mixture's response intensity, thus demonstrating nonlinear contributions of the components. Response intensities predicted by a noncompetitive model, which is most representative of these olfactory receptor neurons, were improved when the model included a term for empirical measurements of inhibitory binding interactions, suggesting that inhibitory binding interactions are one mechanism contributing to mixture suppression. This model's predictions were accurate for binary mixtures but not for larger mixtures, suggesting that additional inhibitory mechanisms are needed to account for mixture interactions in complex mixtures. Accepted: 24 July 1998  相似文献   

7.
Previous work has shown that the hepatopancreas of the spiny lobster (Panulirus argus) contains a mixed-function oxidase system capable of catalyzing the monooxygenation of polycyclic aromatic hydrocarbons to highly toxic products similar to those formed by mammalian tissues. Studies were designed to determine the ability of the spiny lobster to conjugate the phenolic compounds 4-methylumbelliferone, p-nitrophenol, beta-naphthol, and 3-hydroxybenzo[a]pyrene with endogenous molecules. The hepatopancreas contained UDP-glucose (UDPG) dependent glucosyltransferase, while no activity was detected when UDP-glucuronic acid was used as the cosubstrate. Atypical Michaelis-Menten kinetics result with varying concentrations of UDPG, indicating that multiple forms of glucosyltransferase may exist in this organ. The activity was localized in the microsomal fraction, exhibited a pH optimum at 8.0-8.5, and a temperature optimum of 30 degrees C. Sulfate conjugation was found only in the cytosolic fraction of the antennal gland and used adenosine 3'-phosphate 5'-phosphosulfate (PAPS) as the sulfate donor (Km(apparent) = 9.0 +/- 4.9 microM). Hepatopancreas cytosol inhibited sulfotransferase activity. The pH optimum of antennal gland sulfotransferase was a function of the substrate and ranged from 5.5 to 7.4. Analysis of spiny lobster urine 24 hr following exposure to 3-hydroxybenzo[a]pyrene demonstrated the ability of the lobster to form both the sulfate and glucoside conjugate in vivo.  相似文献   

8.
The Mediterranean spiny lobsters, the common spiny lobster Palinurus elephas (Fabricius, 1758) and the pink spiny lobster P. mauritanicus Gruvel, 1911, are important target species for commercial fisheries. In this study, we focus our attention on the DNA sequence variation of the mitochondrial cytochrome oxydase I gene (COI) in the two species of Palinurus. Spiny lobster DNA samples from four Mediterranean localities were analysed to examine the genetic variability at both the intra- and interspecific level. Furthermore, the phylogenetic relationships within the family Palinuridae (among the two species of Palinurus, most of the species of Panulirus and all the species of Jasus) are examined.  相似文献   

9.
The olfactory organ (antennule) of the spiny lobster, Panulirusargus, has from 1000–2000 olfactory sensilla (aesthetascs)which are grouped in a dense tuft along the distal portion ofthe lateral filament. This assemblage of aesthetascs, togetherwith other associated sensilla, forms a substantial boundarylayer through which odor stimuli must diffuse in moving to andfrom the aesthetascs. Periodic flicking of the antennule, abehavior analogous to sniffing in certain vertebrate species,is considered to be a means of reducing the thickness of thisboundary layer. In this report we describe the structure ofthe aesthetasc tuft and examine certain of its dynamic properties.We propose that the unique configuration of the aesthetasces,together with their orientation, serves to channel water flowbetween these sensilla during a flick, thereby reducing diffusiondistances and consequently facilitating the access and removalof odor stimuli in a rapid, synchronized manner. The functionalsignificance of this and other design features of the aesthetasctuft is considered in light of the current understanding offundamental olfactory process.  相似文献   

10.
Arthropod hemocyanins are large respiratory proteins that are composed of up to 48 subunits (8 x 6-mer) in the 75kDa range. A 3D reconstruction of the 1 x 6-mer hemocyanin from the European spiny lobster Palinurus elephas has been performed from 9970 single particles using cryoelectron microscopy. An 8A resolution of the hemocyanin 3D reconstruction has been obtained from about 600 final class averages. Visualisation of structural elements such as alpha-helices has been achieved. An amino acid sequence alignment shows the high sequence identity (>80%) of the hemocyanin subunits from the European spiny lobster P.elephas and the American spiny lobster Panulirus interruptus. Comparison of the P.elephas hemocyanin electron microscopy (EM) density map with the known P.interruptus X-ray structure shows a close structural correlation, demonstrating the reliability of both methods for reconstructing proteins. By molecular modelling, we have found the putative locations for the amino acid sequence (597-605) and the C-terminal end (654-657), which are absent in the available P.interruptus X-ray data.  相似文献   

11.
Hemocyanin and phenoloxidase belong to the type-3 copper protein family, sharing a similar active center whereas performing different roles. In this study, we demonstrated that purified hemocyanin (450 kDa) from the spiny lobster Panulirus argus shows phenoloxidase activity in vitro after treatment with trypsin, chymotrypsin and SDS (0.1% optimal concentration), but it is not activated by sodium perchlorate or isopropanol. The optimal pHs of the SDS-activated hemocyanin were 5.5 and 7.0. Hemocyanin from spiny lobster behaves as a catecholoxidase. Kinetic characterization using dopamine, L-DOPA and catechol shows that dopamine is the most specific substrate. Catechol and dopamine produced substrate inhibition above 16 and 2 mM respectively. Mechanism-based inhibition was also evidenced for the three substrates, being less significant for L-DOPA. SDS-activated phenoloxidase activity is produced by the hexameric hemocyanin. Zymographic analysis demonstrated that incubation of native hemocyanin with trypsin and chymotrypsin, produced bands of 170 and 190 kDa respectively, with intense phenoloxidase activity. Three polypeptide chains of 77, 80 and 89 kDa of hemocyanin monomers were identified by SDS-PAGE. Monomers did not show phenoloxidase activity induced by SDS or partial proteolysis.  相似文献   

12.
The mechanisms by which the output of olfactory receptor cellsis suppressed, as can happen, for example, when receptor cellsare activated by stimulus mixtures, are ill defined. We showthat subthreshold concentrations of some odorants suppress theresponses of antennular (olfactory) chemoreceptors of the spinylobster to stimulatory odorants in a manner indicative of competitiveinhibition. The effect of these suppressive odorants on theresponse of other receptor cells is inconsistent with this hypothesis,allowing that non-competitive mechanisms also contribute toperipheral mixture suppression in the olfactory pathway of thespiny lobster.  相似文献   

13.
Temporally consistent individual differences in behavior impact many ecological processes. We simultaneously examined the effects of individual variation in prey activity level, covering behavior, and body size on prey survival with predators using an urchin–lobster system. Specifically, we tested the hypothesis that slow‐moving purple sea urchins (Strongylocentrotus purpuratus) and urchins who deploy extensive substrate (pebbles and stones) covering behavior will out‐survive active urchins that deploy little to no covering behavior when pitted against a predator, the California spiny lobster (Panulirus interruptus). We evaluated this hypothesis by first confirming whether individual urchins exhibit temporally consistent differences in activity level and covering behavior, which they did. Next, we placed groups of four urchins in mesocosms with single lobster and monitored urchin survival for 108 hr. High activity level was negatively associated with survival, whereas urchin size and covering behavior independently did not influence survival. The negative effect of urchin activity level on urchin survival was strong for smaller urchins and weaker for large urchins. Taken together, these results suggest that purple urchin activity level and size jointly determine their susceptibility to predation by lobsters. This is potentially of great interest, because predation by recovering lobster populations could alter the stability of kelp forests by culling specific phenotypes, like foraging phenotypes, from urchin populations.  相似文献   

14.
The high export value of the Indian spiny lobster Panulirus homarus increasingly attracts the aquaculturists for farming and fattening. However, lack of knowledge on the effect of environmental parameters on the immune system of this animal could result in high mortality, which ultimately may cause major loss to the industry. Here, we report the effect of salinity (20, 25, 35, 40, and 45 per thousand), pH (5.0, 8.0, and 9.5), dissolved oxygen (DO) (1 and 5 mg L(-1)), and ammonia-N concentration (0, 0.5, 1.5 and 3 mg L(-1)) on the immune response of P. homarus measured in the haemolymph in terms of Total Haemocyte Count (THC), phenoloxidase (PO) activity, and NBT-reduction. Our data showed significant reduction (P<0.05) in THC, and NBT-reduction at lower (20 per thousand) and higher (45 per thousand) salinities. However, PO activity showed significant disparity, showing an increasing trend from 20 to 45 per thousand. Significant reduction (P<0.05) in THC and PO activity under acidic and alkaline conditions, under hypoxic condition (1 mg L(-1)), and at the higher ammonia-N concentrations than their respective optimal conditions were observed. Thus, suggesting that extreme environmental parameters can induce modifications in the immune system of the spiny lobster P. homarus, which may enhance their susceptibility to opportunistic pathogens. The humoral parameters such as THC, PO activity, and NBT-reduction can be used as potential stress indicators for healthy management of spiny lobsters.  相似文献   

15.
Modern achelate lobsters, slipper and spiny lobsters, have a specific post-embryonic developmental pattern with the following phases: phyllosoma, nisto (slipper lobsters) or puerulus (spiny lobsters), juvenile and adult. The phyllosoma is a peculiar larva, which transforms through a metamorphic moult into another larval form, the nisto or puerulus which largely resembles the juvenile. Unlike the nisto and puerulus, the phyllosoma is characterised by numerous morphological differences to the adult, e.g. a thin head shield, elongate appendages, exopods on these appendages and a special claw. Our reinvestigation of the 85 million years old fossil “Eryoneicus sahelalmae” demonstrates that it represents an unusual type of achelatan lobster larva, characterised by a mixture of phyllosoma and post-phyllosoma characters. We ascribe it to its own genus: Polzicaris nov. gen. We study its significance by comparisons with other cases of Mesozoic fossil larvae also characterised by a mixture of characters. Accordingly, all these larvae are interpreted as ontogenetic intermediates between phyllosoma and post-phyllosoma morphology. Remarkably, most of the larvae show a unique mixture of retained larval and already developed post-larval features. Considering the different—and incompatible—mixture of characters of each of these larvae and their wide geographical and temporal distribution, we interpret all these larvae as belonging to distinct species. The particular character combinations in the different larvae make it currently difficult to reconstruct an evolutionary scenario with a stepwise character acquisition. Yet, it can be concluded that a larger diversity of larval forms and developmental patterns occurred in Mesozoic than in modern faunas.  相似文献   

16.
Changes in major digestive enzymes through developmental and molt stages were studied for the spiny lobster Panulirus argus. There were significant positive relationships between specific activity of trypsin and amylase enzymes and lobster size, whereas esterase and lipase specific activities decreased as lobsters aged. No relationship was found between amylase/trypsin ratio and lobster size. Positive trends were found, however, for trypsin/lipase and amylase/lipase ratios. Results suggest that changes in enzyme activity respond to the lobsters' physiological needs for particular dietary components although multivariate analysis suggested that enzyme activities could be not totally independent of diet. On the other hand, the pattern of changes of major enzyme activities through molt cycle was similar for most enzymes studied. Following molt, trypsin, chymotrypsin, amylase, and lipase activities gradually increased to maximal levels at late intermolt (C4) and premolt (D). There were no variations in the electrophoretic pattern of digestive enzymes through developmental and molt stages and thus, it is demonstrated that regulation is exerted quantitatively rather than qualitatively. Further studies on the effect of other intrinsic and extrinsic factors on digestive enzyme activities are needed to fully understand digestive abilities and regulation mechanisms in spiny lobsters.  相似文献   

17.
The pronghorn spiny lobster, Panulirus penicillatus, is a circumtropical species which has the widest global distribution among all the species of spiny lobster, ranging throughout the entire Indo-Pacific region. Partial nucleotide sequences of mitochondrial DNA COI (1,142-1,207 bp) and 16S rDNA (535-546 bp) regions were determined for adult and phyllosoma larval samples collected from the Eastern Pacific (EP)(Galápagos Islands and its adjacent water), Central Pacific (CP)(Hawaii and Tuamotu) and the Western Pacific (WP)(Japan, Indonesia, Fiji, New Caledonia and Australia). Phylogenetic analyses revealed two distinct large clades corresponding to the geographic origin of samples (EP and CP+WP). No haplotype was shared between the two regional samples, and average nucleotide sequence divergence (Kimura's two parameter distance) between EP and CP+WP samples was 3.8±0.5% for COI and 1.0±0.4% for 16S rDNA, both of which were much larger than those within samples. The present results indicate that the Pacific population of the pronghorn spiny lobster is subdivided into two distinct populations (Eastern Pacific and Central to Western Pacific), with no gene flow between them. Although the pronghorn spiny lobster have long-lived teleplanic larvae, the vast expanse of Pacific Ocean with no islands and no shallow substrate which is known as the East Pacific Barrier appears to have isolated these two populations for a long time (c.a. 1MY).  相似文献   

18.
The decline in kelp habitat on coastal reefs resulting from changes in ocean climate and the distribution and abundance of herbivorous species is common in many temperate regions of the world. Kelp habitat is highly productive, biodiverse and provides a complex habitat into which many organisms recruit, including spiny lobsters, such as the Australasian red spiny lobster, Jasus edwardsii. The displacement of kelp habitat by less-complex barren reef habitat has the potential to influence the risk of predation for early juvenile lobsters. Therefore, relative predation risk on the juvenile spiny lobster, J. edwardsii, was compared for kelp and barren habitats on the northeast coast of New Zealand using juvenile lobsters held in transparent containers and recording predators with a video recorder. In total, 188 predation attempts were observed within 420?h of video recordings gathered over 3 weeks of sampling. There was an overall higher predation risk in barren habitats. Daytime predation attempts were higher in barren compared to kelp habitat; however, there was no difference between the habitats for night time, dawn or dusk observations, when juvenile lobsters are emergent from shelters and vulnerable to predation. Similar numbers of predatory species were identified in kelp (13) and barren habitat (12). Other factors, such as food availability and time spent away from shelter, especially during night and crepuscular periods, need consideration in future studies when investigating the cause of differences in juvenile lobster mortality among habitats.  相似文献   

19.
The possible role of adenosine 3',5'-cyclic monophosphate (cAMP)in olfactory transduction in the spiny lobster was investigatedusing radioimmunoassay of cAMP and intracellular recording.Application of forskolin or 1-isobutyl-3-methylxanthine increasedcAMP levels in intact sensilla containing the chemoreceptiveouter dendritic segments of the lobster olfactory receptor cell,thereby demonstrating adenylate cyclase and phosphodiesteraseactivity in the sensilla. A complex odor mixture and identifiedexcitatory odor molecules failed to stimulate the productionof cAMP, however In intracellular recordings, superfusion ofthe outer dendritic segments with forskolin, 1-isobutyl-3-methylxanthineand cyclic nucleotide analogs had no direct effect on odor-responsivecells. These compounds did cause infrequent enhancements (sixof 42 cells) of odor-evoked receptor potentials, but processesother than transduction are the most likely causes of this effect.We conclude that cAMP-dependent transduction mechanisms areunlikely to mediate most odor responses in lobsters, in contrastto transduction mechanisms in amphibians and rats.  相似文献   

20.
Regulation of Crustacean Molting: A Multi-Hormonal System   总被引:5,自引:3,他引:2  
SYNOPSIS. In order to increase in size, arthropods must firstmolt (shed) their confining exoskeleton. This molting processis under the immediate control of the steroid molting hormone20-hydroxyecdysone (20-HE). Both the initial rise in circulatinghormone concentration and a coordinated decline are necessaryfor successful molting. Synthesis and/or release of ecdysone,the precursor to 20-HE, is regulated by the neuropeptide molt-inhibitinghormone (MIH). We have determined the primary amino acid sequenceof MIH in the lobster, Homarus americanus. This peptide hasa high degree of identity with the lobster hyperglycemic hormone.Another endocrine factor that appears to be involved in moltingis the juvenile hormone-like terpenoid methyl farnesoate (MF).We have characterized hemolymph MF binding proteins during themolt cycle. In addition, recent data indicate that MF may stimulatethe secretion of 20-HE in vivo and in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号