首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined the fine structure of dorsal rim ommatidia of the compound eye of Pararge aegeria (Lepidoptera: Satyridae) and compared them with ommatidia of the large dorsal region described by Riesenberg (1983 Diploma, University of Munich). 1. The ommatidia of the dorsal rim show morphological specializations known to be typical of the perception of polarized light: (a) the dumb-bell-shaped rhabdoms contain linearly aligned rhabdomeres with only 2 orthogonally arranged microvilli orientations. The rhabdoms are composed of the rhabdomeres of 9 receptor cells, 8 of which are radially arranged. The rhabdomeres of receptor cells VI and V5, as well as D2, D4, D6 and D8 are dorsoventrally aligned, whereas the rhabdomeres of the cells H3 and H7 are perpendicular to them. The rhabdomere of the bilobed 9th retinula cell lies basally and is dorsoventrally aligned, where retinula cell VI and V5 are already axonal. (b) There is no rhabdomeric twist, and (c) the rhabdoms are rather short. 2. However, in the ommatidia of the large dorsal region, only 2 retinula cells (H3 and H7) are suitable for perception of polarized light. 3. Lucifer yellow and horse radish peroxidase were used as tracers to visualize the projections of retinula cell axons of the dorsal rim area and the large dorsal region into the optic neuropils (lamina and medulla). Two receptors (VI and V5) from both the dorsal rim area and the large dorsal region, have long visual fibres projecting into the medulla. The 7 remaining retinula cells of both eye regions, including those that meet the structural requirements for detection of polarized light in the large dorsal region, terminate in the lamina (short visual fibres). These results provide a starting point for further studies to reveal the possible neuronal pathways by which polarized light may be processed.  相似文献   

2.
Summary The nine receptor cells examined in each ommatidium of the butterfly Papilio aegeus aegeus can be named according to their positional orientation across the fused rhabdom. Six of them end as short visual fibres (svf) in the second stratum of the lamina, whereas the remaining three retinula cells (lvf) pass together with the lamina fibres (L-fibres) the first optic ganglion and the outer chiasma to end in the three most distal layers of the second optic ganglion, the medulla. The organization of the retinula-cell axons within the pseudocartridge and the cartridge remains almost uniform throughout the first optic ganglion. Five L-fibres, which have their origin in the fenestrated layer (FL), join each laminar cartridge before entering the neuropil of the first optic region. Four of these L-fibres (L-1, L-2, L-3 and L-4) could be definitely located and characterized using Golgi-stained light- and electron-microscopic techniques. Whereas L-1 and L-3 show a lateral branching pattern reaching only fibres of the same cartridge, L-2 and L-4 have long collaterals interconnecting several neighbouring cartridges in a characteristic pattern. Serial sections of silver-impregnated retinula-cell axons as well as L-fibres were investigated for their synaptic connectivity patterns between and within these fibres. These cellular interactions and possible information processing are discussed.  相似文献   

3.
Each visual unit (ommatidium) of the compound eye of the honey bee contains nine retinula cells, six of which end as axons in the first synaptic ganglion, the lamina, and three in the second optic ganglion, the medulla. A technique allowing light- and electron microscopy to be performed on the same silver-impregnated sections has made it possible to follow all types of retinula axons of one ommatidium to their terminals in order to study the shape of the terminal branches with their position in the cartridge. 1. The axons of retinula cells 1-6 (numbered according to Menzel and Snyder, 1974) end as three different types of short visual fibres (svf) in the lamina; the axons of retinula cells 7-9 run through the lamina to terminate in the medulla and are known as long visual fibres (lvf). Retinula cells of each type are identified by the location of their cell bodies and by the direction of their microvilli. The retinula cells 1 and 4 (group I according to Gribakin, 1967) end as svf type 1 with three tassel-like branches in stratum B of the first synaptic region. The pair of cells 3, 6 and the pair 2, 5 (group II) end in the first synaptic region in stratum A. Cells 3 and 6 have forked endings, svf type 2, whereas cells 2 and 5 have tapered endings, svf type 3. The remaining retinula cells 7, 8 and 9 have long fibres. Nos. 7 and 8 (group III) have tapered endings and are termed lvf types 1 and 2, respectively. The 9th cell is the lvf type 3 with a highly branched ending. 2. The nine axons in the bundle from one ommatidium have relative positions which do not change from the proximal retina to the monopolar cell body layer. 3. By following silver-stained retinula cells and their corresponding axons, it is possible to describe mirror-image arrangements of fibres in the axon bundles in different parts of the eye. This correlation of numbered retinula cells with specific axon types, together with the highly organized pattern in an axon bundle, allows the correlation between histological and physiological findings on polarization and colour perception.  相似文献   

4.
Summary The fine structure of an ommatidium of a skipper butterfly, Parnara guttata, has been studied using the electron microscope. Each ommatidium has nine retinula cells, which were classified into three groups: two distal, six medial and one basal retinula cells. The rhabdomeres of the distal retinula cells are localized in the distal part of the rhabdom, while those of the six medial retinula cells appear throughout most of the rhabdom. The rhabdomere of the basal retinula cell occupies only the basal part of the rhabdom. The rhabdomeres of four medial cells are constructed of parallel microvilli, while fan-like microvilli form the rhabdomeres of other two medial retinula cells. The distal and basal retinula cells have rhabdomeres consisting of both parallel and fan-like microvilli. This is the first time the construction of the rhabdomeres of the distal and basal retinula cells has been described in such fine detail for a skipper butterfly. Nine retinula cell axons of each ommatidium extend to the first neuropile of the optic lobe, the lamina ganglionaris. No difference was found in the number of retinula cells of an ommatidium or the shape of the rhabdom between the dorsal and ventral regions of the compound eye.  相似文献   

5.
Summary The superposition eye of the cockchafer, Melolontha melolontha, exhibits the typical features of many nocturnal and crepuscular scarabaeid beetles: the dioptric apparatus of each ommatidium consists of a thick corneal lens with a strong inner convexity attached to a crystalline cone, that is surrounded by two primary and 9–11 secondary pigment cells. The clear zone contains the unpigmented extensions of the secondary pigment cells, which surround the cell bodies of seven retinula (receptor) cells per ommatidium and a retinular tract formed by them. The seven-lobed fused rhabdoms are composed by the rhabdomeres of the receptor cells 1–7. The rhabdoms are optically separated from each other by a tracheal sheath around the retinulae. The orientation of the microvilli diverges in a fan-like fashion within each rhabdomere. The proximally situated retinula cell 8 does not form a rhabdomere. This standard form of ommatidium stands in contrast to another type of ommatidium found in the dorsal rim area of the eye. The dorsal rim ommatidia are characterized by the following anatomical specializations: (1) The corneal lenses are not clear but contain light-scattering, bubble-like inclusions. (2) The rhabdom length is increased approximately by a factor of two. (3) The rhabdoms have unlobed shapes. (4) Within each rhabdomere the microvilli are parallel to each other. The microvilli of receptor 1 are oriented 90° to those of receptors 2–7. (5) The tracheal sheaths around the retinulae are missing. These findings indicate that the photoreceptors of the dorsal rim area are strongly polarization sensitive and have large visual fields. In the dorsal rim ommatidia of other insects, functionally similar anatomical specializations have been found. In these species, the dorsal rim area of the eye was demonstrated to be the eye region that is responsible for the detection of polarized light. We suggest that the dorsal rim area of the cockchafer eye subserves the same function and that the beetles use the polarization pattern of the sky for orientation during their migrations.  相似文献   

6.
In many insect species, a dorsal rim area (DRA) in the compound eye is adapted to analyze the sky polarization pattern for compass orientation. In the desert locust Schistocerca gregaria, these specializations are particularly striking. The DRA of the locust consists of about 400 ommatidia. The facets have an irregular shape, and pore canals are often present in the corneae. Screening pigment is missing in the region of the dioptric apparatus suggesting large receptive fields. The rhabdoms are shorter, but about four times larger in cross-section than the rhabdoms of ordinary ommatida. Eight retinula cells contribute to the rhabdom. The microvilli of retinula cell 7 and of cells 1, 2, 5, 6, 8 are highly aligned throughout the rhabdom and form two blocks of orthogonal orientation. The microvilli in the minute rhabdomeres of retinula cells 3 and 4, in contrast, show no particular alignment. As in other insect species, microvillar orientations are arranged in a fan-like pattern across the DRA. Photoreceptor axons project to distinct areas in the dorsal lamina and medulla. The morphological specializations in the DRA of the locust eye most likely maximize the polarization sensitivity and suggest that the locust uses this eye region for analysis of the sky polarization pattern.  相似文献   

7.
Summary The retina of the phalangid, Opilio ravennae, consists of retinula cells with distal rhabdomeres, arhabdomeric cells, and sheath cells. The receptive segment of retinula cells shows a clear separation into a Proximal rhabdom, organized into distinct rhabdom units formed by three or four retinula cells, and a Distal rhabdom, consisting of an uniterrupted layer of contiguous rhabdomeres. One of the cells comprising a retinula unit, the so-called distal retinula cell (DRC), has two or three branches that pass laterally alongside the rhabdom, thereby separating the two or three principal retinula cells of a unit. The two morphologically distinct layers of the receptive segment differ with respect to the cellular origin of rhabdomeral microvilli: DRC-branches contribute very few microvilli to the proximal rhabdom and develop extremely large rhabdomeres in the distal rhabdom only, causing the rhabdom units to fuse. Principal retinula cells, on the other hand, comprise the majority of microvilli of the proximal rhabdom, but their rhabdomeres diminish in the distal rhabdom. It is argued that proximal and distal rhabdoms serve different functions in relation to the intensity of incident light.In animals fixed 4 h after sunset, pigment granules retreat from the distal two thirds of the receptive segment. A comparison of retinae of day- and night-adapted animals shows that there is a slight (approximately 15%) increase in the cross-sectional area of rhabdomeral microvilli in dark-adapted animals, which in volume corresponds to the loss of pigment granules from the receptive segment. The length of the receptive segment as well as the pattern and shape of rhabdom units, however, remain unchanged.Each retinula unit is associated with one arhabdomeric cell. Their cell bodies are located close to those of retinula cells, but are much smaller and do not contain pigment granules. The most remarkable feature is a long, slender distal dendrite that extends up to the base of the fused rhabdom where it increases in diameter and develops a number of lateral processes interdigitating with microvilli of the rhabdom. The most distal dendrite portion extends through the center of the fused rhabdom and has again a smooth outline. All dendrites end in the distal third of the proximal rhabdom and are never present in the layer of the contiguous distal rhabdom. Arhabdomeric cells are of essentially the same morphology in day- and night-adapted animals. They are interpreted as photoinsensitive secondary neurons involved in visual information-processing that channel current collected from retinula cells of the proximal rhabdom along the optic nerve. A comparison is made with morphological equivalents of these cells in other chelicerate species.  相似文献   

8.
Summary Except for very special fused rhabdoms, e. g. those with orthogonal microvilli like the worker bee, the direction of the electric vector E of linear polarized light necessary for a maximum response from a retinula cell is not parallel (or perpendicular) to the microvilli of the recorded cell. This is because the rhabdomeres of a fused rhabdom are optically coupled, i. e. the properties of each rhabdomere influence the manner in which light is transmitted down the composite rhabdom structure. A rhabdom is analogous to a non-uniform absorbing optical crystal. Such a crystal has two coordinate (optical) axes along which E remains linear polarized as it propagates. Only when the microvilli of the recorded cell are parallel to one of these axes will the direction ofE for maximum retinula cell response be parallel to the microvilli. The locust-type of rhabdom is used as an example.  相似文献   

9.
Ommatidia of the eucon compound eye of Adoxophyes reticulana (Lepidoptera : Tortricidae) were investigated elect ronmicroscopically. The dorsofrontal part and the dorsal rim region were examined in serial sections. Seven radially arranged retinula cells RC1−7 form the rhabdom from distal to proximal region (Fig. 1). The 8th retinula cell RC8 joins the first 7 at their bases; this cell enlarges proximally (Fig. 1C, D). In the dorsofrontal region, 2 types of rhabdoms are distinguished; Type II (Figs. 1B2;3b) outnumbers Type I (Figs. 1B1;3a by a ratio of 4 : l. In the dorsal rim area, the first 2 rows are occupied exclusively by Type 11-rhabdoms; beyond this, the rhabdom of the dorsal rim area is characterized by the fact that its middle and proximal parts are considerably larger in diameter than in the dorsofrontal part; in this region, the microvilli of the horizontally oriented rhabdomeres are also parallel to the ;,-axis of the eye (Figs. 1B3;3d). Thus, this small eye region meets the structural requirements for the detection of polarized light. The eye is interpreted as an intermediate between apposition and superposition eyes, because the rhabdom begins at the tip of the crystalline tract and the retinula cells are pigmented like those of an apposition eye. On the other hand, the structure of the dioptric apparatus and the tracheal system corresponds to those of superposition eyes. Parallels with the Ephestia eye in basic structural features are discussed in regard to the possible function of this eye and to the systematic position of A. reticulana.  相似文献   

10.
Summary The retina of Cataglyphis bicolor was investigated by electron microscopy. Three types of structurally distinct retinulae were found and mapped throughout the compound eye: Type I is composed of four unpigmented thin cells, four larger pigmented cells as well as a basal ninth cell. Its rhabdom possesses a round cross section and four microvilli directions. This type occupies most of the dorsal two-thirds of the retina. Type II consists of two thin cells, two intermediate cells and four large cells. A basal ninth cell is also present; the rhabdom is as in type I. Type II retinulae are located in the ventral third of the retina. Type III ommatidia are unique within the Hymenoptera: there are four large pigmented cells, four thinner unpigmented cells and a basal ninth cell. The rhabdom, however, has a dumb-bell shaped cross section; two small cells lie at its opposed extremities and the remaining six cells have mutually perpendicular microvilli orientations. This type of retinula is found at the dorso-medial eye margin. Serial sectioning in this region revealed a conical shaped rhabdom without any torsion along the longitudinal axis. The rhabdomere cross section was calculated from distal and proximal thin sections. Angular statistics were applied to the microvilli directions of all three ommatidial types to determine the degree of order. A possible functional significance of the structural specializations of the different eye regions is discussed.Supported by Swiss National Science Foundation, Grant No. 3.814.72 awarded to Prof. Dr. R. Wehner. This work is part of a Ph. D. thesis. I wish to thank Prof. Dr. R. Wehner for continuous support and my colleagues Dr. P. Duelli and Dr. E. Meyer for a fruitful collaboration  相似文献   

11.
The compound eyes of the wingless adults of the Madagascar ‘hissing cockroach’Gromphadorhina portentosa Sachum, 1853 were examined by light and electron microscopy. Each eye contains 2 400‐2 500 mostly hexagonal facets. However, irregularities affecting both shape and size of the ommatidia are relatively common, especially towards the margins of the eye. An individual ommatidium of this eucone type of apposition eye contains eight retinula cells, which give rise to a centrally‐fused, tiered rhabdom. The distal end of the latter is funnel‐shaped and accommodates the proximal end of the cone in its midst. Further below, the rhabdom (then formed by the rhabdomeres of four retinula cells) assumes a squarish profile with microvilli aligned in two directions at right‐angle to each other. Cross sections through the proximal regions of the rhabdom display triangular rhabdom outlines and microvilli (belonging to 3‐4 retinula cells different from those involved in the squarish more distal rhabdom) that run in three directions inclined to one another by 120°. Overall the organization of the eye conforms to the orthopteroid pattern and particularly closely resembles that of the American cockroach Periplaneta americana. However, since G. portentosa possesses fewer ommatidia, this could be a consequence of its inability to fly. On the other hand, the large size of the facets and the voluminous rhabdoms suggest considerable absolute sensitivity and an ability to detect the plane of linearly polarized light. Based on the pattern of microvillus orientations in combination with the crepuscular lifestyle G. portentosa leads and the habitat it occurs in, the prediction is made that this insect uses its green receptors for e‐vector discrimination in the environment of down‐welling light that reaches the forest floor.  相似文献   

12.
Stemmata are peculiar visual organs of most larvae in holometabolous insects. In Hymenoptera, Symphyta larvae exclusively possess a pair of stemmata, whose cellular organizations have not been thoroughly elucidated to date. In this paper, the morphology and fine structure of stemmata were investigated in the large rose sawfly Arge pagana (Panzer, 1798) using light and electron microscopy. The larvae possess a pair of stemmata, which belong to the “unicorneal composite eye” or single-chamber stemmata. Each stemma is composed of a biconvex cornea lens, a layer of corneagenous cells, numerous pigment cells, and hundreds of retinula cells. According to the number of retinula cells forming a rhabdom, the stemma can be divided into two regions, the larger Region I and the smaller Region II. The former occupies the largest area of the stemma and contains the majority of rhabdoms, each of which is formed by the rhabdomeres of eight retinula cells. The latter occupies a narrow posterior margin, where each rhabdom consists of nine retinula cells. Based on the different cellular organizations of rhabdoms, the stemma of Argidae is likely developed by the fusion of two types of ommatidial units.  相似文献   

13.
Abstract The ommatidia of the compound eyes of Artemia salina L. are normally composed of four crystalline cone cells containing glycogen. The cells are enveloped by two so-called “cellules épidermiques juxta-cristallines”. There are also six pigmented retinula cells, all contributing to the rhabdom. A peculiar feature of the Artemia crystalline cone cells is that their elongated parts, the so-called cone cell roots, widen and flatten proximally, forming interdigitating “endfeet”. The basement membrane thus consists of a cellular portion combined with the basal lamina. The main mass of the rhabdom of the Artemia eye is built up by five retinula cells, two contributing a smaller part. The microvilli are oriented in four directions, two being orthogonal. The sixth cell contributes on two small portions to the rhabdom in the distalmost and a more proximal position. The rest of it runs axon-like outside the omnatidium. Where the sixth cell wedges in, the direction of the microvilli is changed and has no orthogonal pattern. Two rhabdom types of compound eyes are distinguished: the decapod or banded or layered rhabdom: and the anostracan rhabdom with continuous rhabdomeres.  相似文献   

14.
Both larval and adult New Zealand cave glowworms exhibit reactions to light; their photoreceptors must, therefore, be regarded as functional. The two principal stemmata of the larva possess large biconvex lenses and voluminous rhabdoms. Approximately 12 retinula cells are present. In light-adapted larvae the diameter of the rhabdom is 8 μm and that of an individual microvillus is 49.5 nm. Dark-adapted eyes have rhabdoms that measure 14 μm in cross section and microvilli with an average diameter of 54 nm. The compound eye of the adult comprises approximately 750 ommatidia, each with a facet diameter of 27–28 μm. A facet is surrounded by 1–6 interommatidial hairs which are up to 30 μm long. The interommatidial angle is 5.5°. Cones, consisting of 4 crystalline cone cells, are of the ‘acone’ type. Pigment granules in the primary pigment cells are twice as large as those of the retinula cells which measure 0.6–0.75 μm in diameter. The rhabdom is basically of the dipteran type, i.e. six open peripheral rhabdomeres surround 2 central rhabdomers arranged in a tandem position. The microvilli of cells 1–6 and cell 8 have diameters ranging from 68 to 73 nm, but those of the distally-located central rhabdomere 7 are 20% larger. This is irrespective of whether the eye is dark or light-adapted. In the latter the cones are long and narrow, the screening pigment granules closely surround the rhabdomeres, and the rhabdom is less voluminous than that of the dark-adapted eye.  相似文献   

15.
棉铃虫蛾复眼的微细结构及其区域性差异   总被引:6,自引:2,他引:4  
郭炳群 《昆虫学报》1988,(2):165-170
用电子显微镜观察棉铃虫蛾复眼的微细结构及其区域性差异。此复眼具有小网膜细胞柱的透明带。每个小眼包括一个外凸内平的角膜,一个晶锥,四个形成晶锥、晶束的晶锥细胞和两个围绕着晶锥的主虹膜细胞,六至八个小网膜细胞和一个基细胞。晶锥末端有一短小固定的晶束。小网膜细胞柱远侧中央有似微绒毛结构的视杆束。每个小眼被六个附色素细胞围绕。 微细结构的区域性差异:1.背方小眼视杆中段横切面近似矩形,主要由六个微绒毛平行排列的三角形视小杯组成,整个视杆包含两个互相垂直的微绒毛轴;腹方、前方、后方和侧方区域的小眼视杆中段横切面为风扇形,“V”字形视小杆内微绒毛排列不平行;2.前方区域小眼视杆中段的横切面要比后方大;3.前方、腹方区域内,有的相邻小眼的小网膜细胞柱互相连结,背方、后方区域未观察到这一现象。  相似文献   

16.
A number of differences exists between the compound eyes of larval and adult rock lobsters, Panulirus longipes. The larval eye more closely resembles the apposition type of compound eye, in which retinula cells and rhabdom lie immediately below the cone cells. The adult eye, on the other hand, is a typical clear-zone photoreceptor in which cones and retinula cell layers are separated by a wide transparent region. The rhabdom of the larval eye, if cut longitudinally, exhibits a "banded" structure over its entire length; in the adult the banded part is confined to the distal end, and the rhabdom is tiered. Both eyes have in common an eighth, distally-located retinula cell, which possesses orthogonally-oriented microvilli, and a peculiar lens-shaped "crystal", which appears to focus light onto the narrow column of the distal rhabdom. Migration of screening pigment on dark-light adaptation is accompanied by changes in sensitivity and resolution of the eye. Retinula cells belonging to one ommatidium do not arrange into one single bundle of axons, but interweave with axons of four neighbouring facets in an extraordinarily regular fashion.  相似文献   

17.
Summary In the dragonflySympetrum, the circumferential sequence of retinular cells *R5*R4, R3*R2, R1*R8, R7, R6 (in which R5 & 8, R2 & 3, R1 & 4 comprise three receptor pairs, R7 and R6 an unmatched pair with long visual fibres, and asterisks denote the positions of cone cell processes) is homologized to the general pattern of odonate retinulae. This sequence runs in an anticlockwise direction for ommatidia of the right ventral retina viewed from outside inwards, that in the left retina runs clockwise. The proximo-distal sequence of contributions of these cells to the retinula (presence of nucleus, contribution to the tiered rhabdom, Fig. 1) has R1 & 4 in the basal third (Fig. 10) beneath R5 & 8, and R2 & 3 (Fig. 6); R7 has a large distal rhabdomere beneath which R6 contributes a few microvilli for most of the rhabdom's length. There is no twist to the rhabdom, and neighbouring ommatidia have consistent orientations. R1 is dorsal and R2 & 3 anterior. Rhabdom diameters are shown in Table 1; individual rhabdomere volumes are as follows: R7, 320 m3; R5 & 8, 650 m3 each; R2 & 3, 430 m3 each; R1 & 4, 230 m3 each.Abbreviations LA light-adapted - DA dark-adapted - ER endoplasmic reticulum - BM basement membrane  相似文献   

18.
Summary The eye of the deep-sea penaeid shrimp Gennadas consists of approximately 700 square ommatidia with a side length of 15 n. It is hemispherical in shape and is located at the end of a 1.5 mm long eye stalk. The cornea is extremely thin, but the crystalline cone is well-developed. A clear zone between dioptric structures and the rhabdom layer is absent. A few pigment granules are found within the basement membrane; otherwise they, too, are absent from the eye of Gennadas. The rhabdom is massive and occupies 50 % of the eye. It consists of orthogonally oriented microvilli (the latter measuring 0.07 m in diameter) and is 75 m long. In cross sections adjacent rhabdoms, all approximately 8 m in diameter, form an almost continuous sheet and leave little space for retinula cell cytoplasm. In spite of a one h exposure to light, rhabdom microvilli show no disintegration or disruption of membranes. Vesicles of various kinds, however, are present in all seven retinula cells near the basement membrane. Bundles of seven axons penetrate the basement membrane. On their way to the lamina they often combine and form larger aggregations.The authors wish to thank the director of the Meat Industry Research Institute in Hamilton and his staff for the use of their electron microscope facilities  相似文献   

19.
Summary The compound eyes of two species of damsel-flies, Ishunura senegalensis and Cersion calamorum, were examined by electron microscopy. Each ommatidium is composed of eight retinula cells which are semistratified in the receptor layer. The retinula cells are divided into four types from the difference of levels in the rhabdom formation; one distal large cell having the rhabdomere only in the distal layer, four middle cells forming the rhabdom in the middle layer, two proximal cells making up the rhabdom in the proximal layer and one distal small cell having no rhabdomere in any layers. In addition, the lamina ganglionaris was partly observed. Some retinula axons terminate at an different level from the other axons. The functional differentiation among these different types of cells is discussed with relation to the analysis of the polarized light and the discrimination of the diffraction images.This work is supported by a grant from the U.S. Army Research and Development Group (Far East), Department of the Army (DA-CRD-AG-S29-544-67-G61).The authors wish to express their gratitude to Drs. H. Morita and H. Tateda for their helpful discussions throughout this study.  相似文献   

20.
Ultrastructure of stemmata (larval eyes), stemmatal nerves, and the optic neuropils of 5th-instar larvae of cotton bollworm, Heliothis armigera (Hübner) (Lepidoptera : Noctuidae), were examined with scanning and transmission electron microscopes. Six stemmata are on each side of the head. Each stemma consists of 7 retinula cells arranged into 2 tiers. Stemmata I and II have 4 distal retinula cells and 3 proximal cells, the other 4 stemmata (III–IV) have 3 distal cells and 4 proximal cells. Stemmata I and IV have a short proximal rhabdom and the rhabdomere of each proximal cell has its microvilli projecting in only one direction. On the other hand, each stemma (in stemmata II–V) has a long proximal rhabdom and the rhabdomere of each proximal cell has microvilli pitched in several different directions relative to the horizontal plane. An axon projects proximally from each retinula cell body. The stemmatal nerve is composed of the 42 retinular axons from all of the 6 stemmata on the same side of the head. Each stemmatal nerve projects to the ipsilateral optic neuropil. Axons from each stemma are in a fasicle (within the stemmatal nerve), which consists of 7 axons, 3–4 of them are thick and terminate synaptically in the proximal neuropil; the others are thinner and terminate in the distal neuropil. Organelles, particularly lysosomes, undergo ultrastructural transformations relative to ambient light levels. The functional significance of abovementioned structures are discussed in light of current knowledge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号