首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Stribinskis V  Gao GJ  Ellis SR  Martin NC 《Genetics》2001,158(2):573-585
RPM2 is a Saccharomyces cerevisiae nuclear gene that encodes the protein subunit of mitochondrial RNase P and has an unknown function essential for fermentative growth. Cells lacking mitochondrial RNase P cannot respire and accumulate lesions in their mitochondrial DNA. The effects of a new RPM2 allele, rpm2-100, reveal a novel function of RPM2 in mitochondrial biogenesis. Cells with rpm2-100 as their only source of Rpm2p have correctly processed mitochondrial tRNAs but are still respiratory deficient. Mitochondrial mRNA and rRNA levels are reduced in rpm2-100 cells compared to wild type. The general reduction in mRNA is not reflected in a similar reduction in mitochondrial protein synthesis. Incorporation of labeled precursors into mitochondrially encoded Atp6, Atp8, Atp9, and Cytb protein was enhanced in the mutant relative to wild type, while incorporation into Cox1p, Cox2p, Cox3p, and Var1p was reduced. Pulse-chase analysis of mitochondrial translation revealed decreased rates of translation of COX1, COX2, and COX3 mRNAs. This decrease leads to low steady-state levels of Cox1p, Cox2p, and Cox3p, loss of visible spectra of aa(3) cytochromes, and low cytochrome c oxidase activity in mutant mitochondria. Thus, RPM2 has a previously unrecognized role in mitochondrial biogenesis, in addition to its role as a subunit of mitochondrial RNase P. Moreover, there is a synthetic lethal interaction between the disruption of this novel respiratory function and the loss of wild-type mtDNA. This synthetic interaction explains why a complete deletion of RPM2 is lethal.  相似文献   

3.
Lutz MS  Ellis SR  Martin NC 《Genetics》2000,154(3):1013-1023
The Saccharomyces cerevisiae nuclear gene RPM2 encodes a component of the mitochondrial tRNA-processing enzyme RNase P. Cells grown on fermentable carbon sources do not require mitochondrial tRNA processing activity, but still require RPM2, indicating an additional function for the Rpm2 protein. RPM2-null cells arrest after 25 generations on fermentable media. Spontaneous mutations that suppress arrest occur with a frequency of approximately 9 x 10(-6). The resultant mutants do not grow on nonfermentable carbon sources. We identified two loci responsible for this suppression, which encode proteins that influence proteasome function or assembly. PRE4 is an essential gene encoding the beta-7 subunit of the 20S proteasome core. A Val-to-Phe substitution within a highly conserved region of Pre4p that disrupts proteasome function suppresses the growth arrest of RPM2-null cells on fermentable media. The other locus, UMP1, encodes a chaperone involved in 20S proteasome assembly. A nonsense mutation in UMP1 also disrupts proteasome function and suppresses Deltarpm2 growth arrest. In an RPM2 wild-type background, pre4-2 and ump1-2 strains fail to grow at restrictive temperatures on nonfermentable carbon sources. These data link proteasome activity with Rpm2p and mitochondrial function.  相似文献   

4.
5.
6.
RPM2 is identified here as a high-copy suppressor of isp42-3, a temperature-sensitive mutant allele of the mitochondrial protein import channel component, Isp42p. RPM2 already has an established role as a protein component of yeast mitochondrial RNase P, a ribonucleoprotein enzyme required for the 5' processing of mitochondrial precursor tRNAs. A relationship between mitochondrial tRNA processing and protein import is not readily apparent, and, indeed, the two functions can be separated. Truncation mutants lacking detectable RNase P activity still suppress the isp42-3 growth defect. Moreover, RPM2 is required for normal fermentative yeast growth, even though mitochondrial RNase P activity is not. The portion of RPM2 required for normal growth and suppression of isp42-3 is the same. We conclude that RPM2 is a multifunctional gene. We find Rpm2p to be a soluble protein of the mitochondrial matrix and discuss models to explain its suppression of isp42-3.  相似文献   

7.
Rbp1p, a yeast RNA-binding protein, decreases the level of mitochondrial porin mRNA by enhancing its degradation, but the intracellular location of the Rbp1p-mediated degradation complex remains unknown. We show here that Rbp1p in xrn1Delta mutant yeast localizes in specific cytoplasmic foci that are known as P-bodies. The N-terminal and RNA recognition motif (RRM) 1 domains of Rbp1p are necessary but not sufficient for its localization in P bodies. Rbp1p forms oligomers through its C-terminal domain in vivo; N-terminal-delete, or RRM1-mutated Rbp1p can be more efficiently recruited to P-bodies in an xrn1Delta strain, expressing a full-length Rbp1p. Although POR1 mRNA is localized to P bodies in an xrn1Delta strain, this localization does not depend on Rbp1p. Decapping activator Dhh1p directly interacts with Rbp1p. However, the recruitment of Rbp1p to P-bodies does not require Dhh1p or Ccr4p. In wild-type cells, Rbp1p can localize to P-bodies under glucose deprivation or treatment with KCl. In addition, Rbp1p-mediated porin mRNA decay is elicited by Xrn1p, a 5 ' to 3 ' exonuclease. These results provide new insight into the mechanism of Rbp1p function.  相似文献   

8.
Initial steps in the synthesis of functional tRNAs require 5'- and 3'-processing of precursor tRNAs (pre-tRNAs), which in yeast mitochondria are achieved by two endonucleases, RNase P and RNase Z. In this study, using a combination of detergent-free Blue Native Gel Electrophoresis, proteomics and in vitro testing of pre-tRNA maturation, we reveal the physical association of these plus other mitochondrial activities in a large, stable complex of 136 proteins. It contains a total of seven proteins involved in RNA processing including RNase P and RNase Z, five out of six subunits of the mitochondrial RNA degradosome, components of the fatty acid synthesis pathway, translation, metabolism and protein folding. At the RNA level, there are the small and large rRNA subunits and RNase P RNA. Surprisingly, this complex is absent in an oar1Δ deletion mutant of the type II fatty acid synthesis pathway, supporting a recently published functional link between pre-tRNA processing and the FAS II pathway--apparently by integration into a large complex as we demonstrate here. Finally, the question of mt-RNase P localization within mitochondria was investigated, by GFP-tracing of a known protein subunit (Rpm2p). We find that about equal fractions of RNase P are soluble versus membrane-attached.  相似文献   

9.
10.
RNA14 was identified as a gene involved in premessenger RNA cleavage and polyadenylation. These processing steps take place in the nucleus, but the Rna14p protein is distributed in both the nucleus and the cytoplasm. By subcellular fractionation, we show here that the cytoplasmic fraction is localised in the mitochondria. In order to understand the role played by Rna14p in mitochondria, we have searched for new thermosensitive alleles of RNA14. We isolated thirteen new mutants. Some of them are deficient in mRNA cleavage and polyadenylation at the restrictive temperature - like the first mutant identified (rna14-1). However, others do not appear to be impaired in any of the steps in RNA metabolism investigated, nor do they appear to be involved in the replication or expression of mitochondrial DNA or in respiration. The localisation data strongly suggest that, besides an essential function in mRNA polyadenylation, the Rna14p protein has a non essential function in mitochondrial metabolism.  相似文献   

11.
12.
The ubiquitin-proteasome pathway (UPP) is involved in the degradation of the extracellular matrix (ECM) and trophoblastic invasion during early pregnancy. Our previous studies demonstrated that inhibition of UPP suppresses expression of matrix metalloproteinase (MMP)-2 and -9. LMP2 is an important proteasome subunit that is critical for proteasome activity. This study investigated the regulatory mechanism of LMP2 on the expression and activities of MMP-2 and MMP-9. Our results showed that transfection of LMP2 siRNA plasmid into the human invasive extravillous trophoblast cell line (HTR8/Svneo) could significantly suppress expression of LMP2 mRNA and protein. The mRNA expression of MMP-2 and MMP-9 and their activities were markedly decreased in the LMP2-inhibited cells. Inhibition of LMP2 could also reduce IkappaBalpha mRNA level, although the expression of phosphorylated IkappaBalpha was increased. In the LMP2-inhibited cells, expression of mRNA encoding NF-kappaB subunits p50 and p65 remained normal, but the p50 protein level was significantly decreased in the cytosolic and nuclear extracts, while p65 protein was markedly reduced only in the nuclear extract. We also demonstrated that blockage of the NF-kappaB pathway by the NF-kappaB translocation inhibitor SN50 markedly reduced the expression of MMP-2 and MMP-9 in HTR8/Svneo cells, a result that is fully consistent with the results from the LMP2-inhibited HTR8/Svneo cells. These data suggest that LMP2 contributes to IkappaBalpha degradation and p50 generation, and that inhibition of LMP2 suppresses expression and activities of MMP-2 and MMP-9 by blocking the transfer of active NF-kappaB heterodimers into the nucleus.  相似文献   

13.
Rpp21, a protein subunit of human nuclear ribonuclease P (RNase P) was cloned by virtue of its homology with Rpr2p, an essential subunit of Saccharomyces cerevisiae nuclear RNase P. Rpp21 is encoded by a gene that resides in the class I gene cluster of the major histocompatibility complex, is associated with highly purified RNase P, and binds precursor tRNA. Rpp21 is predominantly localized in the nucleoplasm but is also observed in nucleoli and Cajal bodies when expressed at high levels. Intron retention and splice-site selection in Rpp21 precursor mRNA regulate the intranuclear distribution of the protein products and their association with the RNase P holoenzyme. Our study reveals that dynamic nuclear structures that include nucleoli, the perinucleolar compartment and Cajal bodies are all involved in the production and assembly of human RNase P.  相似文献   

14.
Mutations affecting the RNA sequence of the first 10 codons of the Saccharomyces cerevisiae mitochondrial gene COX2 strongly reduce translation of the mRNA, which encodes the precursor of cytochrome c oxidase subunit II. A dominant chromosomal mutation that suppresses these defects is an internal in-frame deletion of 67 codons from the gene YDR494w. Wild-type YDR494w encodes a 361-residue polypeptide with no similarity to proteins of known function. The epitope-tagged product of this gene, now named RSM28, is both peripherally associated with the inner surface of the inner mitochondrial membrane and soluble in the matrix. Epitope-tagged Rsm28p from Triton X-100-solubilized mitochondria sedimented with the small subunit of mitochondrial ribosomes in a sucrose gradient containing 500 mM NH4Cl. Complete deletion of RSM28 caused only a modest decrease in growth on nonfermentable carbon sources in otherwise wild-type strains and enhanced the respiratory defect of the suppressible cox2 mutations. The rsm28 null mutation also reduced translation of an ARG8m reporter sequence inserted at the COX1, COX2, and COX3 mitochondrial loci. We tested the ability of RSM28-1 to suppress a variety of cox2 and cox3 mutations and found that initiation codon mutations in both genes were suppressed. We conclude that Rsm28p is a dispensable small-subunit mitochondrial ribosomal protein previously undetected in systematic investigations of these ribosomes, with a positive role in translation of several mitochondrial mRNAs.  相似文献   

15.
The smm1 mutation suppresses defects in mitochondrial distribution and morphology caused by the mdm1-252 mutation in the yeast Saccharomyces cerevisiae. Cells harboring only the smm1 mutation themselves display temperature-sensitive growth and aberrant mitochondrial inheritance and morphology at the nonpermissive temperature. smm1 maps to RSP5, a gene encoding an essential ubiquitin-protein ligase. The smm1 defects are suppressed by overexpression of wild-type ubiquitin but not by overexpression of mutant ubiquitin in which lysine-63 is replaced by arginine. Furthermore, overexpression of this mutant ubiquitin perturbs mitochondrial distribution and morphology in wild-type cells. Site-directed mutagenesis revealed that the ubiquitin ligase activity of Rsp5p is essential for its function in mitochondrial inheritance. A second mutation, smm2, which also suppressed mdm1-252 defects, but did not cause aberrant mitochondrial distribution and morphology, mapped to BUL1, encoding a protein interacting with Rsp5p. These results indicate that protein ubiquitination mediated by Rsp5p plays an essential role in mitochondrial inheritance, and reveal a novel function for protein ubiquitination.  相似文献   

16.
RNA14 was identified as a gene involved in premessenger RNA cleavage and polyadenylation. These processing steps take place in the nucleus, but the Rna14p protein is distributed in both the nucleus and the cytoplasm. By subcellular fractionation, we show here that the cytoplasmic fraction is localised in the mitochondria. In order to understand the role played by Rna14p in mitochondria, we have searched for new thermosensitive alleles of RNA14. We isolated thirteen new mutants. Some of them are deficient in mRNA cleavage and polyadenylation at the restrictive temperature – like the first mutant identified (rna14-1). However, others do not appear to be impaired in any of the steps in RNA metabolism investigated, nor do they appear to be involved in the replication or expression of mitochondrial DNA or in respiration. The localisation data strongly suggest that, besides an essential function in mRNA polyadenylation, the Rna14p protein has a non essential function in mitochondrial metabolism.  相似文献   

17.
Subunit c is normally present as an inner mitochondrial membrane component of the Fo sector of the ATP synthase complex, but in the late infantile form of neuronal ceroid lipofuscinosis (NCL) it was also found in lysosomes in high concentrations. Mechanism for specific accumulation of subunit c in lysosomes is not known. The rate of degradation of subunit c as measured by pulsechase and immunoprecipitation showed a marked delay of degradation in patients fibroblasts with late infantile form of NCL. There were no significant differences between control cells and cells with disease in the degradation of cytochrome oxidase subunit IV, an inner membrane protein of mitochondria. Measurement of labeled subunit c in mitochondrial and lysosomal fractions showed that the accumulation of labeled subunit c in the mitochondrial fraction can be detected before lysosomal appearance of radioactive subunit c, suggesting that subunit c accumulated as a consequence of abnormal catabolism in the mitochondrion and is transferred to lysosomes, through an autophagic process. There were no large differences of various lysosomal protease activities between control and patient cells. In patient cells sucrose loading caused a marked shift of lysosomal density, but did not a shift of subunit c containing storage body. The biosynthetic rate of subunit c and mRNA levels for P1 and P2 genes that code for it were almost the same in both control and patient cells. These findings suggest that a specific failure in the degradation of subunit c after its normal inclusion in mitochondria and its consequent accumulation in lysosomes.Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

18.
19.
An abundant yeast mitochondrial 40 kDa protein (p40) binds with high specificity to the 5'-untranslated region of cytochrome c oxidase subunit II (COX2) mRNA. Using mobility shift and competition assays, we show here that purified p40 complexes with the leaders of all eight mitochondrial mRNAs of Saccharomyces cerevisiae. The location of the protein binding site on the different leaders is not conserved with respect to the AUG start codon. In vitro RNA footprint and deletion experiments have been used to define the p40-binding site on the leaders of COX1 and ATP9 mRNAs. Nucleotides at, and near, a single stranded region are protected or exposed for DEPC modification by binding of p40 to these leaders. Removal of this region from the COX1 messenger shows that it is essential for the protein-RNA interaction. While no obvious sequence similarity can be detected between the single stranded regions in different leaders, a nearby helical segment is conserved. A consensus model for p40-RNA interactions is presented and the possible biological function of p40 is discussed.  相似文献   

20.
We have previously shown that mutants in the cardiolipin (CL) pathway exhibit temperature-sensitive growth defects that are not associated with mitochondrial dysfunction. The pgs1Delta mutant, lacking the first enzyme of the CL pathway, phosphatidylglycerolphosphate synthase (Pgs1p), has a defective cell wall due to decreased beta-1,3-glucan (Zhong, Q., Gvozdenovic-Jeremic, J., Webster, P., Zhou, J., and Greenberg, M. L. (2005) Mol. Biol. Cell 16, 665-675). Disruption of KRE5, a gene involved in cell wall biogenesis, restores beta-1,3-glucan synthesis and suppresses pgs1Delta temperature sensitivity. To gain insight into the mechanisms underlying the cell wall defect in pgs1Delta, we show in the current report that pgs1Delta cells have reduced glucan synthase activity and diminished levels of Fks1p, the glucan synthase catalytic subunit. In addition, activation of Slt2p, the downstream effector of the protein kinase C (PKC)-activated cell integrity pathway, was defective in pgs1Delta. The kre5W1166X suppressor restored Slt2p activation and dramatically increased (>10-fold) mRNA levels of FKS2, the alternate catalytic subunit of glucan synthase, partially restoring glucan synthase activity. Consistent with these results, up-regulation of PKC-Slt2 signaling and overexpression of FKS1 or FKS2 alleviated sensitivity of pgs1Delta to cell wall-perturbing agents and restored growth at elevated temperature. These findings demonstrate that functional Pgs1p is essential for cell wall biogenesis and activation of the PKC-Slt2 signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号