首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Testicular compartment that includes rete testis and the adjacent transitional zone (TZ) of seminiferous tubules has been examined only by light and electron microscopy until now. However, recent data suggest that adult Sertoli cells (SCs) located in this compartment are capable to commence active proliferation both in vitro and in vivo, and hence, are not completely differentiated. The present study is first to investigate mouse rete testis and TZ during the postembryonic development and is intended to determine new protein markers for cells of this compartment, the state of their differentiation, and also their proliferative activity. It was demonstrated that rete testis cells were stained for SC marker Wt1 transiently, until day 25 of postembryonic development, then the staining disappeared. Another SC marker Dmrt1 that involved in the process of SC differentiation was not expressed in the rete testis cells during the postnatal development and in the adult state. One more feature that distinguished rete testis cells from SCs was lower proliferative activity of rete testis cells in 2–6 days old mice. SCs from TZ expressed Wt1 at all ages examined. However, at earlier ages, they were heterogeneous on Dmrt1 expression, and only by day 25, Dmrt1 expression was completely disappeared from TZ SCs. It is interesting that on day 18 when SCs in seminiferous tubules complete differentiation and exit from cell cycle proliferation of TZ SCs was at significantly higher level. It is also showed that in 3D culture, Wt1+ cells isolated from rete testis and TZ of 60 days old GFP male mice were capable to form seminiferous tubules de novo in cooperation with testicular cells from 6 days old mice.  相似文献   

2.
3.
Circadian rhythms are generated by the oscillating expression of the Per1 and Per2 genes, which are expressed not only in the central brain pacemaker but also in peripheral tissues. Hormones are likely to coordinate physiological function in time. We performed in situ hybridization to localize mPer1 and mPer2 mRNA to particular cell types and tissue compartments in adrenal, thyroid, and testis. BALB/c mice maintained in a 12:12-h light-dark cycle expressed mPer1 in adrenal medulla, particularly in late afternoon and early night. mPer2 mRNA was more intensely expressed in adrenal cortex, especially in afternoon and evening. mPer1 mRNA was detected in thyroid. mPer1 was found in some but not all seminiferous tubules of each mouse at all times of day. Quantitation in C57BL/6 mice revealed a significant increase in the number of heavily labeled seminiferous tubules early in the night. Consistent with in situ hybridization, immunocytochemistry showed PER1 protein in spermatocytes and spermatids (spermatogenic stages VII-XII). Staining in spermatogonia and interstitial cells was inconsistent. Double labeling with 5'-bromodeoxyuridine showed PER1 expression first occurring 5 days after DNA replication. We conclude that mPeriod genes are expressed in peripheral endocrine glands. Central regulation, adenohypophyseal control, and functional importance of expression and phase remain to be elucidated.  相似文献   

4.
5.
孤儿受体TR3在小鼠睾丸中的定位和表达   总被引:4,自引:0,他引:4  
Mu XM  Liu YX 《生理学报》1998,50(4):439-443
本文采用原位杂交和免疫组织化学技术,观察孤儿受体TR3及其mRNA在小鼠睾丸中的表达及细胞定位。结果表明,在小鼠睾丸中有显著量的孤儿受体TR3 mRNA和蛋白表达,其表达量在不同曲细精管有明显的差异;孤儿受体TR3蛋白主要定位于生精细胞,其mRNA在生精细胞特异表达,主要在精原细胞和发育早期的初级精母细胞表达,提示孤儿受体TR3在小鼠曲细精管精子发生的早期阶段中起着调控作用。  相似文献   

6.
Zfy-1 and Zfy-2 are candidate genes for Tdy, the testis-determining gene in mice. We have analysed these genes in a line of XY female mice that have been shown to be mutated in Tdy. We have used Southern blot analysis to show that the Zfy genes have not undergone any major structural alterations, and have also demonstrated that both genes are transcribed normally from the mutant Y chromosome (Y) in both adult XYY testis and XY female embryonic gonads. The fact that these genes show a normal structure and expression pattern in mice with a Y chromosome known to carry a mutation in Tdy and that mutant embryos develop into females despite Zfy-1 expression, strongly supports other recent evidence that Zfy genes are not directly involved in primary testis determination.  相似文献   

7.
The expression of the Crlz-1 gene in mouse testis, where it was found to be expressed most highly among the tested mouse organs, was analyzed spatiotemporally by employing RT-PCR and in situ hybridization techniques with the aid of immunohistochemistry and/or immunofluorescence methods. In 1-week-old neonatal testis, Crlz-1 was strongly expressed in the spermatogonia and Sertoli cells in its seminiferous cord. In 2- to 3-week-old prepubertal testis, where Sertoli cells cease to proliferate, Crlz-1 expression dropped and remained weakly at the rim layer of seminiferous cords and/or tubules, where spermatogonia are present. In the adult testis at 12 weeks after birth, Crlz-1 was expressed mainly in the spermatids near the lumen of seminiferous tubules. In a further in situ hybridization of Crlz-1 in the 12-week-old adult testis with hematoxylin nuclear counterstaining, Crlz-1 was mainly expressed at step 16 of spermatids between stages VII and VIII of seminiferous tubules as well as in their residual bodies at stage IX of seminiferous tubules.  相似文献   

8.
9.
10.
11.
In view of the inconclusive data concerning the role of androgen-binding protein (ABP) in male reproductive physiology, we thought it would be pertinent to make several transgenic mouse lines overexpressing the rat ABP gene to unravel its role in Sertoli cell and epididymal homeostasis. Heterozygote transgenic mouse lines carrying the 5.5 kb ABP rat genomic DNA were produced by pronuclear microinjection. Northern blot analysis showed overexpression of rat ABP (rABP) mRNA in the testis of transgenic mice compared to rat testis control. rABP was appropriately expressed in Sertoli cells as demonstrated by in situ hybridization analysis. Sertoli cell number is increased in the seminiferous tubules of mice overexpressing rABP compared to non-transgenic littermates and scattered Sertoli cells present vacuolated-like cytoplasms, PAS and osmium negative. Compared to the wild type, the transgenic mice exhibited reduced fertility and focal damage in seminiferous epithelium characterized by morphological features compatible with programmed cell death.  相似文献   

12.
13.
A portion of fetal germ cells undergoes apoptosis in the physiological context, but the molecular mechanisms of their apoptosis are largely unknown. Because p53 tumor suppressor gene product promotes apoptosis in various types of cells, we have investigated the expression of p53 in fetal gonads and examined the influence of loss of p53 function in fetal gonad cells using mice deficient in the p53 gene. We found that the expression of p53 protein in fetal testis was induced after 15.5 dpc (days post coitum), while the expression was not detected in fetal ovary. The number of apoptotic cells found in the seminiferous tubules of fetal testes was not significantly different between p53-deficient and wild-type mice until 16.5 dpc. At 17.5 dpc, however, more apoptotic cells were observed in wild-type testes than in the p53-deficient mice. In contrast, a similar number of apoptotic cells was found in fetal ovaries throughout these developmental stages. These observations indicate that p53 promotes apoptosis of fetal testicular cells after 16.5 dpc.  相似文献   

14.
The expression of the mRNA for SLF (the c-kit ligand), a product of the "steel" locus, has been investigated in postnatal mouse testis and homogeneous populations of testicular cells. The message was found expressed in postnatal mouse testis but not in germ cells. Studies on primary mouse Sertoli cell cultures from 18 day old mice show that Sertoli cells are the site of SLF mRNA expression in the seminiferous tubules. Treatment of Sertoli cell cultures with cAMP analogs led to a significant increase in the SLF mRNA levels.  相似文献   

15.
In this study,anti-spermatogenesis-associated 17 (Spatal7) polyclonal antibody was preparedby immunizing New Zealand white rabbits with a synthesized peptide corresponding to the amino acid se-quence 7-23 of the mouse Spata17 protein.Immunohistochemical analysis revealed that Spata17 proteinwas most abundant in the cytoplasm of round spermatids and elongating spermatids within seminiferoustubules of the adult testis.The expression of Spata17 mRNA in cultured mouse spermatogonia (GC-1) cellswas almost undetectable.In an experimental unilateral cryptorchidism model of an adult mouse,the expres-sion of Spata17 mRNA had no obvious difference with the normal testis until postoperation day 1,butgradually decreased from day 3 and was almost undetectable on day 17.Immunohistochemical analysisrevealed that the protein was almost undetectable within seminiferous tubules of an experimental unilateralcryptorchidism model of the adult testis on postoperation day 8.Flow cytometry analysis showed that theexpression of Spatal7 protein in the GC-1 cell line could accelerate GC-1 cell apoptosis.The effect increaseswith the increasing of the transfected dose of pcDNA3.1 (-)/Spata17.By Hoechst 33258 staining,a classicalway of identifying apoptotic cells,we further confirmed that the apoptosis was induced by expression ofSpata17 in transfected GC-1 cells.  相似文献   

16.
目的研究胚胎期接触双酚A(Bisphenol A,BPA)对雄性胎鼠睾丸发育的影响及睾丸内增殖细胞核抗原(Proliferating Cell Nuclear Antigen,PCNA)和p53表达的影响。方法母鼠怀孕后第2天对其灌服双酚A(剂量5,50,100 mg/ml/day),一直持续分娩,F1代雄性小鼠饲养至75日龄,观察BPA对仔鼠成年后睾丸结构和PCNA和p53表达的影响。结果发现BPA处理组睾丸发育受到抑制,曲细精管直径和管腔直径变小(P0.05),管腔内出现大量胞质残余体,部分管腔出现潴留管腔液,支持细胞生长受到抑制,生精细胞排列紊乱,细胞质出现空泡化。免疫组织化学结果显示在BPA处理组,PCNA除了在精原细胞大量表达外,在初级精母细胞中表达量明显升高(P0.05,P0.01),免疫荧光结果显示胚胎期接触BPA导致成年后睾丸内p53蛋白表达量显著升高(P0.05,P0.01)。结论胚胎期接触BPA对雄鼠睾丸发育有着长期的不良影响,可能源于BPA引起细胞的异常增殖和凋亡。  相似文献   

17.
More than 90% of the glycolipid in mammalian testis consists of a unique sulfated glyceroglycolipid, seminolipid. The sulfation of the molecule is catalyzed by a Golgi membrane-associated sulfotransferase, cerebroside sulfotransferase (CST). Disruption of the Cst gene in mice results in male infertility due to the arrest of spermatogenesis prior to the metaphase of the first meiosis. However, the issue of which side of the cell function-germ cells or Sertoli cells-is deteriorated in this mutant mouse remains unknown. Our findings show that the defect is in the germ cell side, as evidenced by a transplantation analysis, in which wild-type spermatogonia expressing the green fluorescent protein were injected into the seminiferous tubules of CST-null testis. The transplanted GFP-positive cells generated colonies and spermatogenesis proceeded over meiosis in the mutant testis. The findings also clearly show that the seminolipid is expressed on the plasma membranes of spermatogonia, spermatocytes, spermatids, and spermatozoa, as evidenced by the immunostaining of wild-type testes using an anti-sulfogalactolipid antibody, Sulph-1 in comparison with CST-null testes as a negative control, and that seminolipid appears as early as day 8 of age, when Type B spermatogonia emerge.  相似文献   

18.
19.
Sertoli cells are the primary structural component of the fetal testis cords and postnatal seminiferous tubules. Live imaging technologies facilitate the visualization of cell morphologies and behaviors through developmental processes. A transgenic mouse line was generated using a fragment of the rat Gata4 gene to direct the expression of a dual-color fluorescent protein reporter in fetal and adult Sertoli cells. The reporter encoded a red fluorescent protein, monomeric Cherry (mCherry), fused to histone 2B and enhanced green fluorescent protein (EGFP) fused to a glycosylphosphatidylinositol sequence, with a self-cleaving 2A polypeptide separating the two fusion proteins. After translation, the red and green fluorescent proteins translocated to the nucleus and plasma membrane, respectively, of Sertoli cells. Transgene expression in testes was first detected by fluorescent microscopy around Embryonic Day 12.0. Sertoli cell division and migration were visualized during testis cord formation in organ culture. Initially, the Sertoli cells had mesenchyme-like morphologies and behaviors, but later, the cells migrated to the periphery of the testis cords to become epithelialized. In postnatal seminiferous tubules, Sertoli nuclei were evenly spaced when viewed from the external surface of tubules, and Sertoli cytoplasm and membranes were associated with germ cells basally in a rosette pattern. This mouse line was bred to previously described transgenic mouse lines expressing EGFP in Sertoli cytoplasm or a nuclear cyan fluorescent protein (Cerulean) and mCherry in plasma membranes of germ cells. This revealed the physical relationship between Sertoli and germ cells in developing testis cords and provided a novel perspective on Sertoli cell development.  相似文献   

20.
Although much research has focused on transferring exogenous genes into living mouse testis to investigate specific gene functions in spermatogenic, Sertoli, and Leydig cells, relatively little is known regarding real-time gene expression in vivo. In this study, we constructed a bicistronic lentiviral vector (LV) encoding firefly luciferase and enhanced green fluorescence protein (EGFP); this was a highly efficient in vivo gene transfer tool. After microinjecting LV into the seminiferous tubules the ICR mouse testis, we detected luciferase and EGFP expression in vivo and ex vivo in the injected tubules using bioluminescence imaging (BLI) with the IVIS-200 system and fibered confocal fluorescence microscopy (CellViZio), respectively. In addition, with an in vivo BLI system, luciferase expression in the testis was detected for ∼3 mo. Furthermore, EGFP expression in seminiferous tubules was confirmed in excised testes via three-dimensional fluorescent imaging with a confocal laser-scanning microscope. With immunostaining, EGFP expression was confirmed in several male germ cell types in the seminiferous tubules, as well as in Sertoli and Leydig cells. In conclusion, we demonstrated that real-time in vivo BLI analysis can be used to noninvasively (in vivo) monitor long-term luciferase expression in mouse testis, and we verified that EGFP expression is localized in seminiferous tubules after bicistronic LV-mediated gene transfer into mouse testes. Furthermore, we anticipate the future use of in vivo BLI technology for real-time study of specific genes involved in spermatogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号