首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Numerous biological processes involve the recognition of a specific pattern of binding sites on a target protein or surface. Although ligands displayed by disordered scaffolds form stochastic rather than specific patterns, theoretical models predict that recognition will occur between patterns that are characterized by similar or "matched" statistics. Endowing synthetic biomimetic structures with statistical pattern matching capabilities may improve the specificity of sensors and resolution of separation processes. We demonstrate that statistical pattern matching enhances the potency of polyvalent therapeutics. We functionalized liposomes with an inhibitory peptide at different densities and observed a transition in potency at an interpeptide separation that matches the distance between ligand-binding sites on the heptameric component of anthrax toxin. Pattern-matched polyvalent liposomes inhibited anthrax toxin in vitro at concentrations four orders of magnitude lower than the corresponding monovalent peptide, and neutralized this toxin in vivo. Statistical pattern matching also enhanced the potency of polyvalent inhibitors of cholera toxin. This facile strategy should be broadly applicable to the detection and neutralization of toxins and pathogens.  相似文献   

2.
We describe a novel method to synthesize activated polymers of controlled molecular weight and apply this method to investigate the relationship between the structure and activity of polyvalent inhibitors of anthrax toxin. In particular, we observe an initial sharp increase in potency with increasing ligand density, followed by a plateau where potency is independent of ligand density. Our simple strategy for designing polyvalent inhibitors of controlled molecular weight and ligand density will be broadly applicable for designing inhibitors for a variety of pathogens and toxins, and for elucidating structure-activity relationships in these systems. Our results also demonstrate a role for kinetics in influencing inhibitory potency in polyvalent systems. Finally, our work presents a synthetic route to polyvalent inhibitors that are more structurally defined and effective in vivo. This control over inhibitor composition will be generally useful for the optimization of inhibitor potency and pharmacokinetics, and for the eventual application of these molecules in vivo.  相似文献   

3.
The design of polyvalent molecules, consisting of multiple copies of a biospecific ligand attached to a suitable scaffold, represents a promising approach to inhibit pathogens and oligomeric microbial toxins. Despite the increasing interest in structure-based drug design, few polyvalent inhibitors based on this approach have shown efficacy in vivo. Here we demonstrate the structure-based design of potent biospecific heptavalent inhibitors of anthrax lethal toxin. Specifically, we illustrate the ability to design potent polyvalent ligands by matching the pattern of binding sites on the biological target. We used a combination of experimental studies based on mutagenesis and computational docking studies to identify the binding site for an inhibitory peptide on the heptameric subunit of anthrax toxin. We developed an approach based on copper-catalyzed azide-alkyne cycloaddition (click-chemistry) to facilitate the attachment of seven copies of the inhibitory peptide to a β-cyclodextrin core via a polyethylene glycol linker of an appropriate length. The resulting heptavalent inhibitors neutralized anthrax lethal toxin both in vitro and in vivo and showed appreciable stability in serum. Given the inherent biocompatibility of cyclodextrin and polyethylene glycol, these potent well-defined heptavalent inhibitors show considerable promise as anthrax antitoxins.  相似文献   

4.
The simultaneous binding of multiple ligands on one entity to multiple receptors on another can result in an affinity that is significantly greater than that for the binding of a single ligand to a single receptor. This concept of "polyvalency" can be used to design molecules that are potent inhibitors of toxins and pathogens. We describe the design of potent polyvalent inhibitors that neutralize anthrax toxin in vivo as well as our attempts to elucidate the relationship between inhibitor structure and activity. We also highlight promising future avenues for research in polyvalent drug design.  相似文献   

5.
Recently, we demonstrated that simultaneous blocking of bacterial growth by antibiotics and inhibition of anthrax toxin action with antibodies against protective antigen were beneficial for the treatment of anthrax. The present study examined the hypothesis that blocking the pore formed by protective antigen can inhibit the action of anthrax toxin. The potential inhibitors were chosen by a structure-based design using beta-cyclodextrin as the starting molecule. Several beta-cyclodextrin derivatives were evaluated for their ability to protect RAW 264.7 cells from the action of anthrax lethal toxin. Per-substituted aminoalkyl derivatives displayed inhibitory activity and were protective against anthrax lethal toxin action at low micromolar concentrations. These results provide the basis for a structure-based drug discovery program, with the goal of identifying new drug candidates for anthrax treatment.  相似文献   

6.
Designing a polyvalent inhibitor of anthrax toxin   总被引:12,自引:0,他引:12  
Screening peptide libraries is a proven strategy for identifying inhibitors of protein-ligand interactions. Compounds identified in these screens often bind to their targets with low affinities. When the target protein is present at a high density on the surface of cells or other biological surfaces, it is sometimes possible to increase the biological activity of a weakly binding ligand by presenting multiple copies of it on the same molecule. We isolated a peptide from a phage display library that binds weakly to the heptameric cell-binding subunit of anthrax toxin and prevents the interaction between cell-binding and enzymatic moieties. A molecule consisting of multiple copies of this nonnatural peptide, covalently linked to a flexible backbone, prevented assembly of the toxin complex in vitro and blocked toxin action in an animal model. This result demonstrates that protein-protein interactions can be inhibited by a synthetic, polymeric, polyvalent inhibitor in vivo.  相似文献   

7.
Cai C  Che J  Xu L  Guo Q  Kong Y  Fu L  Xu J  Cheng Y  Chen W 《PloS one》2011,6(6):e20646
Anthrax toxin is the major virulence factor produced by Bacillus anthracis. The toxin consists of three protein subunits: protective antigen (PA), lethal factor, and edema factor. Inhibition of PA binding to its receptors, tumor endothelium marker-8 (TEM8) and capillary morphogenesis protein-2 (CMG2) can effectively block anthrax intoxication, which is particularly valuable when the toxin has already been overproduced at the late stage of anthrax infection, thus rendering antibiotics ineffectual. Receptor-like agonists, such as the mammalian cell-expressed von Willebrand factor type A (vWA) domain of CMG2 (sCMG2), have demonstrated potency against the anthrax toxin. However, the soluble vWA domain of TEM8 (sTEM8) was ruled out as an anthrax toxin inhibitor candidate due to its inferior affinity to PA. In the present study, we report that L56A, a PA-binding-affinity-elevated mutant of sTEM8, could inhibit anthrax intoxication as effectively as sCMG2 in Fisher 344 rats. Additionally, pharmacokinetics showed that L56A and sTEM8 exhibit advantages over sCMG2 with better lung-targeting and longer plasma retention time, which may contribute to their enhanced protective ability in vivo. Our results suggest that receptor decoys based on TEM8 are promising anthrax toxin inhibitors and, together with the pharmacokinetic studies in this report, may contribute to the development of novel anthrax drugs.  相似文献   

8.
Furin and related proprotein convertases cleave the multibasic motifs R-X-R/K/X-R in the precursor proteins and, as a result, transform the latent proproteins into biologically active proteins and peptides. Furin is present both in the intracellular secretory pathway and at the cell surface. Intracellular furin processes its multiple normal cellular targets in the Golgi and secretory vesicle compartments while cell-surface furin appears to be essential only for the processing of certain pathogenic proteins and, importantly, anthrax. To design potent, safe and selective inhibitors of furin, we evaluated the potency and selectivity of the derivatized peptidic inhibitors modeled from the extended furin cleavage sequence of avian influenza A H5N1. We determined that the N- and C-terminal modifications of the original RARRRKKRT inhibitory scaffold produced selective and potent, nanomolar range, inhibitors of furin. These inhibitors did not interfere with the normal cellular function of furin because of the likely functional redundancy existing between furin and other proprotein convertases. These furin inhibitors, however, were highly potent in blocking the furin-dependent cell-surface processing of anthrax protective antigen-83 both in vitro and cell-based assays and in vivo. We conclude that the inhibitors we have designed have a promising potential as selective anthrax inhibitors, without affecting major cell functions.  相似文献   

9.
Soluble receptor decoy inhibitors, including receptor-immunogloubulin (Ig) fusion proteins, have shown promise as candidate anthrax toxin therapeutics. These agents act by binding to the receptor-interaction site on the protective antigen (PA) toxin subunit, thereby blocking toxin binding to cell surface receptors. Here we have made the surprising observation that co-administration of receptor decoy-Ig fusion proteins significantly delayed, but did not protect, rats challenged with anthrax lethal toxin. The delayed toxicity was associated with the in vivo assembly of a long-lived complex comprised of anthrax lethal toxin and the receptor decoy-Ig inhibitor. Intoxication in this system presumably results from the slow dissociation of the toxin complex from the inhibitor following their prolonged circulation. We conclude that while receptor decoy-Ig proteins represent promising candidates for the early treatment of B. anthracis infection, they may not be suitable for therapeutic use at later stages when fatal levels of toxin have already accumulated in the bloodstream.  相似文献   

10.
An inhibitor of anthrax lethal toxin mediated cell death (1) was identified by a medium throughput cell-based screen. This compound was determined to specifically inhibit anthrax lethal factor (LF), and subsequent SAR studies produced an even more potent inhibitor (4). Mechanistic studies identified these agents as uncompetitive inhibitors of LF with Ki values of 3.0 and 1.7 microM, respectively, with good cell potency and low cytotoxicity.  相似文献   

11.
Bacillus anthracis toxins inhibit human neutrophil NADPH oxidase activity   总被引:4,自引:0,他引:4  
Bacillus anthracis, the causative agent of anthrax, is a Gram-positive, spore-forming bacterium. B. anthracis virulence is ascribed mainly to a secreted tripartite AB-type toxin composed of three proteins designated protective Ag (PA), lethal factor, and edema factor. PA assembles with the enzymatic portions of the toxin, the metalloprotease lethal factor, and/or the adenylate cyclase edema factor, to generate lethal toxin (LTx) and edema toxin (ETx), respectively. These toxins enter cells through the interaction of PA with specific cell surface receptors. The anthrax toxins act to suppress innate immune responses and, given the importance of human neutrophils in innate immunity, they are likely relevant targets of the anthrax toxin. We have investigated in detail the effects of B. anthracis toxin on superoxide production by primary human neutrophils. Both LTx and ETx exhibit distinct inhibitory effects on fMLP (and C5a) receptor-mediated superoxide production, but have no effect on PMA nonreceptor-dependent superoxide production. These inhibitory effects cannot be accounted for by induction of neutrophil death, or by changes in stimulatory receptor levels. Analysis of NADPH oxidase regulation using whole cell and cell-free systems suggests that the toxins do not exert direct effects on NADPH oxidase components, but rather act via their respective effects, inhibition of MAPK signaling (LTx), and elevation of intracellular cAMP (ETx), to inhibit upstream signaling components mediating NADPH oxidase assembly and/or activation. Our results demonstrate that anthrax toxins effectively suppress human neutrophil-mediated innate immunity by inhibiting their ability to generate superoxide for bacterial killing.  相似文献   

12.
Anthrax lethal factor is a Zn(2+)-dependent metalloprotease and the key virulence factor of tripartite anthrax toxin secreted by Bacillus anthracis, the causative agent of anthrax. A series of guanidinylated 2,5-dideoxystreptamine derivatives were designed and synthesized as inhibitors of lethal factor, some of which show strong inhibitory activity against lethal factor in an in vitro FRET assay. Preparation and structure-activity relationships of these compounds are presented.  相似文献   

13.
2001: a year of major advances in anthrax toxin research   总被引:7,自引:0,他引:7  
Anthrax is caused when spores of Bacillus anthracis enter a host and germinate. The bacteria multiply and secrete a tripartite toxin causing local edema and, in systemic infection, death. In nature, anthrax is primarily observed in cattle and other herbivores; humans are susceptible but rarely affected. In 2001, anthrax spores were used effectively for the first time in bioterrorist attacks, resulting in 11 confirmed cases of human disease and five deaths. These events have underscored the need for improved prophylaxis, therapeutics and a molecular understanding of the toxin. The good news about anthrax is that several decisive discoveries regarding the toxin have been reported recently. Most notably, the toxin receptor was identified, the 3-D structures of two of the toxin subunits were solved and potent in vivo inhibitors were designed. These findings have improved our understanding of the intoxication mechanism and are stimulating the design of strategies to fight disease in the future.  相似文献   

14.
The virulent spore-forming bacterium Bacillus anthracis secretes anthrax toxin composed of protective antigen (PA), lethal factor (LF) and edema factor (EF). LF is a Zn-dependent metalloprotease that inactivates key signaling molecules, such as mitogen-activated protein kinase kinases (MAPKK), to ultimately cause cell death. We report here the identification of small molecule (nonpeptidic) inhibitors of LF. Using a two-stage screening assay, we determined the LF inhibitory properties of 19 compounds. Here, we describe six inhibitors on the basis of a pharmacophoric relationship determined using X-ray crystallographic data, molecular docking studies and three-dimensional (3D) database mining from the US National Cancer Institute (NCI) chemical repository. Three of these compounds have K(i) values in the 0.5-5 microM range and show competitive inhibition. These molecular scaffolds may be used to develop therapeutically viable inhibitors of LF.  相似文献   

15.
Lethal toxin is a major anthrax virulence factor, causing the rapid death of experimental animals. Lethal toxin can enter most cell types, but only certain macrophages and cell lines are susceptible to toxin-mediated cytolysis. We have shown that in murine RAW 264.7 cells, sublytic amounts of lethal toxin trigger intracellular signaling events typical for apoptosis, including changes in membrane permeability, loss of mitochondrial membrane potential, and DNA fragmentation. The cells were protected from the toxin by specific inhibitors of caspase-1, -2, -3, -4, -6, and -8. Phagocytic activity of macrophages was inhibited by sublytic concentrations of lethal toxin. Infection of cells with anthrax (Sterne) spores impaired their bactericidal capacity, which could be reversed by a lethal toxin inhibitor, bestatin. We suggest that apoptosis rather than direct lysis is biologically relevant to lethal toxin intracellular activity.  相似文献   

16.
The lethal toxin ofBacillus anthracis is central to the pathogenesis of anthrax. Using primary cultures of mouse peritoneal macrophages, we have demonstrated that intracellular calcium release inhibitors protect against anthrax lethal toxin-induced cytotoxicity. The cytolytic effect of anthrax lethal toxin was markedly reduced by dantrolene, an inhibitor of calcium release from intracellular calcium stores. Pretreatment of macrophages with cyclosporin A, which has been shown to be a potent inhibitor of calcium release from mitochondria, also protected cells against cytotoxicity. These results indicate that calcium release from intracellular store may be an essential step for the propagation of anthrax lethal toxin-induced cell damage in macrophages. Thus our findings suggest that dantrolene, cyclosporin A, and possibly other drugs affecting intracellular calcium pools might be effectively preventing the toxicity from anthrax lethal toxin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Adenylate cyclase (AC) toxins produced by Bacillus anthracis and Bordetella pertussis were compared for their ability to interact with and intoxicate Chinese hamster ovary cells. At 30 degrees C, anthrax AC toxin exhibited a lag of 10 min for measurable cAMP accumulation that was not seen with pertussis AC toxin. This finding is consistent with previous data showing inhibition of anthrax AC toxin but not pertussis AC toxin entry by inhibitors of receptor-mediated endocytosis (Gordon, V. M., Leppla, S. H., and Hewlett, E. L. (1988) Infect. Immun. 56, 1066-1069). Treatment of target Chinese hamster ovary cells with trypsin or cycloheximide reduced anthrax AC toxin-induced cAMP accumulation by greater than 90%, but was without effect on pertussis AC toxin. In contrast, incubation of the AC toxins with gangliosides prior to addition to target cells inhibited cAMP accumulation by pertussis AC toxin, but not anthrax AC toxin. To evaluate the role of lipids in the interaction of pertussis AC toxin with membranes, multicompartmental liposomes were loaded with a fluorescent marker and exposed to toxin. Pertussis AC toxin elicited marker release in a time- and concentration-dependent manner and required a minimal calcium concentration of 0.2 mM. These data demonstrate that the requirements for intoxication by the AC toxins from B. anthracis and B. pertussis are fundamentally different and provide a perspective for new approaches to study the entry processes.  相似文献   

18.
RGD (arginine-glycine-aspartic acid) is a known peptide sequence that binds platelet integrin GPIIbIIIa and disrupts platelet-fibrinogen binding and platelet cross-linking during thrombosis. RGD peptides are unsuitable for clinical applications due to their high 50% inhibitory concentration (IC50) and low in vivo residence times. We addressed these issues by conjugating RGD peptides to biocompatible macromolecular carriers: hyperbranched polyglycerols (HPG) via divinyl sulfone. The GPIIbIIIa binding activity of RGD was maintained after conjugation and the effectiveness of the HPG-RGD conjugate was dependent upon molecular weight and the number of RGD peptides attached to each HPG molecule. These polyvalent inhibitors of platelet aggregation decreased the IC50 of RGD in an inverse linear manner based on the number of RGD peptides per HPG. Since HPG-RGD conjugates do not cause platelet activation by degranulation and certain substitution ratios do not increase fibrinogen binding to resting platelets, HPG-RGD may serve as a model for a novel class of antithrombotics.  相似文献   

19.
Protective antigen (PA) and lethal factor (LF) are the two components of anthrax lethal toxin. PA is responsible for interacting with cell receptors and for the subsequent translocation of LF inside the cell compartment. A re-engineered toxin comprised of PA and a fusion chimera LF/Pseudomonas exotoxin (FP59) is a promising choice for tumor cell surface targeting. We demonstrated, however, that in vitro in cell-free system and in cultured human colon carcinoma LoVo, fibrosarcoma HT1080 and glioma U251 cells membrane type-1 matrix metalloproteinase (MT1-MMP) cleaves both the PA83 precursor and the PA63 mature protein. Exhaustive MT1-MMP cleavage of PA83 in vitro generates several major degradation fragments with an N-terminus at Glu40, Leu48, and Gln512. In cultured cells, MT1-MMP-dependent cleavage releases the cell-bound PA83 and PA63 species from the cell surface. As a result, MT1-MMP expressing cells have less PA63 to internalize. In agreement, our observations demonstrate that MT1-MMP proteolysis of PA makes the MT1-MMP-expressing aggressive invasive cells resistant to the cytotoxic effect of a bipartite PA/FP59 toxin. We infer from our studies that synthetic inhibitors of MMPs are likely to increase the therapeutic anti-cancer effect of anthrax toxin. In addition, our study supports a unique role of furin in the activation of PA, thereby suggesting that furin inhibitors are the likely specific drugs for short-term therapy of anthrax infection.  相似文献   

20.
The anthrax toxin complex is primarily responsible for most of the symptoms of anthrax. This complex is composed of three proteins, anthrax protective antigen, anthrax edema factor, and anthrax lethal factor. The three proteins act in binary combination of protective antigen plus edema factor (edema toxin) and protective antigen plus lethal factor (lethal toxin) that paralyze the host defenses and eventually kill the host. Both edema factor and lethal factor are intracellularly acting proteins that require protective antigen for their delivery into the host cell. In this study, we show that deletion of certain residues of protective antigen results in variants of protective antigen that inhibit the action of anthrax toxin both in vitro and in vivo. These mutants protected mice against both lethal toxin and edema toxin challenge, even when injected at a 1:8 ratio relative to the wild-type protein. Thus, these mutant proteins are promising candidates that may be used to neutralize the action of anthrax toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号