首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The initial microbial colonization of tooth surfaces is a repeatable and selective process, with certain bacterial species predominating in the nascent biofilm. Characterization of the initial microflora is the first step in understanding interactions among community members that shape ensuing biofilm development. Using molecular methods and a retrievable enamel chip model, we characterized the microbial diversity of early dental biofilms in three subjects. A total of 531 16S rRNA gene sequences were analyzed, and 97 distinct phylotypes were identified. Microbial community composition was shown to be statistically different among subjects. In all subjects, however, 4-h and 8-h communities were dominated by Streptococcus spp. belonging to the Streptococcus oralis/Streptococcus mitis group. Other frequently observed genera (comprising at least 5% of clone sequences in at least one of the six clone libraries) were Actinomyces, Gemella, Granulicatella, Neisseria, Prevotella, Rothia, and Veillonella. Fluorescence in situ hybridization (FISH) confirmed that the proportion of Streptococcus sp. sequences in the clone libraries coincided with the proportion of streptococcus probe-positive organisms on the chip. FISH also revealed that, in the undisturbed plaque, not only Streptococcus spp. but also the rarer Prevotella spp. were usually seen in small multigeneric clusters of cells. This study shows that the initial dental plaque community of each subject is unique in terms of diversity and composition. Repetitive and distinctive community composition within subjects suggests that the spatiotemporal interactions and ecological shifts that accompany biofilm maturation also occur in a subject-dependent manner.  相似文献   

2.

Background

Despite continued preventive efforts, dental caries remains the most common disease of man. Organic acids produced by microorganisms in dental plaque play a crucial role for the development of carious lesions. During early stages of the pathogenetic process, repeated pH drops induce changes in microbial composition and favour the establishment of an increasingly acidogenic and aciduric microflora. The complex structure of dental biofilms, allowing for a multitude of different ecological environments in close proximity, remains largely unexplored. In this study, we designed a laboratory biofilm model that mimics the bacterial community present during early acidogenic stages of the caries process. We then performed a time-resolved microscopic analysis of the extracellular pH landscape at the interface between bacterial biofilm and underlying substrate.

Methodology/Principal Findings

Strains of Streptococcus oralis, Streptococcus sanguinis, Streptococcus mitis, Streptococcus downei and Actinomyces naeslundii were employed in the model. Biofilms were grown in flow channels that allowed for direct microscopic analysis of the biofilms in situ. The architecture and composition of the biofilms were analysed using fluorescence in situ hybridization and confocal laser scanning microscopy. Both biofilm structure and composition were highly reproducible and showed similarity to in-vivo-grown dental plaque. We employed the pH-sensitive ratiometric probe C-SNARF-4 to perform real-time microscopic analyses of the biofilm pH in response to salivary solutions containing glucose. Anaerobic glycolysis in the model biofilms created a mildly acidic environment. Decrease in pH in different areas of the biofilms varied, and distinct extracellular pH-microenvironments were conserved over several hours.

Conclusions/Significance

The designed biofilm model represents a promising tool to determine the effect of potential therapeutic agents on biofilm growth, composition and extracellular pH. Ratiometric pH analysis using C-SNARF-4 gives detailed insight into the pH landscape of living biofilms and contributes to our general understanding of metabolic processes in in-vivo-grown bacterial biofilms.  相似文献   

3.

Objective

Early childhood caries (ECC) has become a prevalent public health problem among Chinese preschool children. The bacterial microflora is considered to be an important factor in the formation and progress of dental caries. However, high-throughput and large-scale studies of the primary dentition are lacking. The present study aimed to compare oral microbial profiles between children with severe ECC (SECC) and caries-free children.

Methods

Both saliva and supragingival plaque samples were obtained from children with SECC (n = 20) and caries-free children (n = 20) aged 3 to 4 years. The samples were assayed using the Human Oral Microbe Identification Microarray (HOMIM).

Results

A total of 379 bacterial species were detected in both the saliva and supragingival plaque samples from all children. Thirteen (including Streptococcus) and two (Streptococcus and Actinomyces) bacterial species in supragingival plaque and saliva, respectively, showed significant differences in prevalence between the two groups. Of these, the frequency of Streptococcus mutans detection was significantly higher in both saliva (p = 0.026) and plaque (p = 0.006) samples from the SECC group than in those from the caries-free group.

Conclusions

The findings of our study revealed differences in the oral microbiota between the SECC and caries-free groups Several genera, including Streptococcus, Porphyromonas, and Actinomyces, are strongly associated with SECC and can be potential biomarkers of dental caries in the primary dentition.  相似文献   

4.
Abstract

Dental plaque is a biofilm composed of a complex oral microbial community. The accumulation of plaque in the pit and fissures of dental elements often leads to the development of tooth decay (dental caries). Here, potent anti-biofilm materials were developed by incorporating zinc methacrylates or di-n-butyl-dimethacrylate-tin into the light-curable sealant and their physical, mechanical, and biological properties were evaluated. The data revealed that 5% di-n-butyl-dimethacrylate-tin (SnM 5%) incorporated sealant showed strong anti-biofilm efficacy against various single-species (Streptococcus mutans or Streptococcus oralis or Candida albicans) and S. mutans-C. albicans cross-kingdom dual-species biofilms without either impairing the mechanical properties of the sealant or causing cytotoxicities against mouse fibroblasts. The findings indicate that the incorporation of SnM 5% in the experimental pit and fissure self-adhesive sealant may have the potential to be part of current chemotherapeutic strategies to prevent the formation of cariogenic oral biofilms that cause dental caries.  相似文献   

5.
Streptococcus mutans, a Gram positive facultative anaerobe, is one among the approximately seven hundred bacterial species to exist in human buccal cavity and cause dental caries. Quorum sensing (QS) is a cell-density dependent communication process that respond to the inter/intra-species signals and elicit responses to show behavioral changes in the bacteria to an aggressive forms. In accordance to this phenomenon, the S. mutans also harbors a Competing Stimulating Peptide (CSP)-mediated quorum sensing, ComCDE (Two-component regulatory system) to regulate several virulence-associated traits that includes the formation of the oral biofilm (dental plaque), genetic competence and acidogenicity. The QS-mediated response of S. mutans adherence on tooth surface (dental plaque) imparts antibiotic resistance to the bacterium and further progresses to lead a chronic state, known as periodontitis. In recent years, the oral streptococci, S. mutans are not only recognized for its cariogenic potential but also well known to worsen the infective endocarditis due to its inherent ability to colonize and form biofilm on heart valves. The review significantly appreciate the increasing complexity of the CSP-mediated quorum-sensing pathway with a special emphasis to identify the plausible drug targets within the system for the development of anti-quorum drugs to control biofilm formation and associated risks.  相似文献   

6.

Background

Combating dental biofilm formation is the most effective means for the prevention of caries, one of the most widespread human diseases. Among the chemical supplements to mechanical tooth cleaning procedures, non-bactericidal adjuncts that target the mechanisms of bacterial biofilm formation have gained increasing interest in recent years. Milk proteins, such as lactoferrin, have been shown to interfere with bacterial colonization of saliva-coated surfaces. We here study the effect of bovine milk osteopontin (OPN), a highly phosphorylated whey glycoprotein, on a multispecies in vitro model of dental biofilm. While considerable research effort focuses on the interaction of OPN with mammalian cells, there are no data investigating the influence of OPN on bacterial biofilms.

Methodology/Principal Findings

Biofilms consisting of Streptococcus oralis, Actinomyces naeslundii, Streptococcus mitis, Streptococcus downei and Streptococcus sanguinis were grown in a flow cell system that permitted in situ microscopic analysis. Crystal violet staining showed significantly less biofilm formation in the presence of OPN, as compared to biofilms grown without OPN or biofilms grown in the presence of caseinoglycomacropeptide, another phosphorylated milk protein. Confocal microscopy revealed that OPN bound to the surface of bacterial cells and reduced mechanical stability of the biofilms without affecting cell viability. The bacterial composition of the biofilms, determined by fluorescence in situ hybridization, changed considerably in the presence of OPN. In particular, colonization of S. mitis, the best biofilm former in the model, was reduced dramatically.

Conclusions/Significance

OPN strongly reduces the amount of biofilm formed in a well-defined laboratory model of acidogenic dental biofilm. If a similar effect can be observed in vivo, OPN might serve as a valuable adjunct to mechanical tooth cleaning procedures.  相似文献   

7.
The initial microbial colonization of tooth surfaces is a repeatable and selective process, with certain bacterial species predominating in the nascent biofilm. Characterization of the initial microflora is the first step in understanding interactions among community members that shape ensuing biofilm development. Using molecular methods and a retrievable enamel chip model, we characterized the microbial diversity of early dental biofilms in three subjects. A total of 531 16S rRNA gene sequences were analyzed, and 97 distinct phylotypes were identified. Microbial community composition was shown to be statistically different among subjects. In all subjects, however, 4-h and 8-h communities were dominated by Streptococcus spp. belonging to the Streptococcus oralis/Streptococcus mitis group. Other frequently observed genera (comprising at least 5% of clone sequences in at least one of the six clone libraries) were Actinomyces, Gemella, Granulicatella, Neisseria, Prevotella, Rothia, and Veillonella. Fluorescence in situ hybridization (FISH) confirmed that the proportion of Streptococcus sp. sequences in the clone libraries coincided with the proportion of streptococcus probe-positive organisms on the chip. FISH also revealed that, in the undisturbed plaque, not only Streptococcus spp. but also the rarer Prevotella spp. were usually seen in small multigeneric clusters of cells. This study shows that the initial dental plaque community of each subject is unique in terms of diversity and composition. Repetitive and distinctive community composition within subjects suggests that the spatiotemporal interactions and ecological shifts that accompany biofilm maturation also occur in a subject-dependent manner.  相似文献   

8.

Background

Microbial cell-cell interactions in the oral flora are believed to play an integral role in the development of dental plaque and ultimately, its pathogenicity. The effects of other species of oral bacteria on biofilm formation and virulence gene expression by Streptococcus mutans, the primary etiologic agent of dental caries, were evaluated using a dual-species biofilm model and RealTime-PCR analysis.

Results

As compared to mono-species biofilms, biofilm formation by S. mutans was significantly decreased when grown with Streptococcus sanguinis, but was modestly increased when co-cultivated with Lactobacillus casei. Co-cultivation with S. mutans significantly enhanced biofilm formation by Streptococcus oralis and L. casei, as compared to the respective mono-species biofilms. RealTime-PCR analysis showed that expression of spaP (for multi-functional adhesin SpaP, a surface-associated protein that S. mutans uses to bind to the tooth surface in the absence of sucrose), gtfB (for glucosyltransferase B that synthesizes α1,6-linked glucan polymers from sucrose and starch carbohydrates) and gbpB (for surface-associated protein GbpB, which binds to the glucan polymers) was decreased significantly when S. mutans were co-cultivated with L. casei. Similar results were also found with expression of spaP and gbpB, but not gtfB, when S. mutans was grown in biofilms with S. oralis. Compared to mono-species biofilms, the expression of luxS in S. mutans co-cultivated with S. oralis or L. casei was also significantly decreased. No significant differences were observed in expression of the selected genes when S. mutans was co-cultivated with S. sanguinis.

Conclusions

These results suggest that the presence of specific oral bacteria differentially affects biofilm formation and virulence gene expression by S. mutans.  相似文献   

9.
Porphyromonas gingivalis is present in dental plaque as early as 4 h after tooth cleaning, but it is also associated with periodontal disease, a late-developing event in the microbial successions that characterize daily plaque development. We report here that P. gingivalis ATCC 33277 is remarkable in its ability to interact with a variety of initial, early, middle, and late colonizers growing solely on saliva. Integration of P. gingivalis into multispecies communities was investigated by using two in vitro biofilm models. In flow cells, bacterial growth was quantified using fluorescently conjugated antibodies against each species, and static biofilm growth on saliva-submerged polystyrene pegs was analyzed by quantitative real-time PCR using species-specific primers. P. gingivalis could not grow as a single species or together with initial colonizer Streptococcus oralis but showed mutualistic growth when paired with two other initial colonizers, Streptococcus gordonii and Actinomyces oris, as well as with Veillonella sp. (early colonizer), Fusobacterium nucleatum (middle colonizer), and Aggregatibacter actinomycetemcomitans (late colonizer). In three-species flow cells, P. gingivalis grew with Veillonella sp. and A. actinomycetemcomitans but not with S. oralis and A. actinomycetemcomitans. Also, it grew with Veillonella sp. and F. nucleatum but not with S. oralis and F. nucleatum, indicating that P. gingivalis and S. oralis are not compatible. However, P. gingivalis grew in combination with S. gordonii and S. oralis, demonstrating its ability to overcome the incompatibility when cultured with a second initially colonizing species. Collectively, these data help explain the observed presence of P. gingivalis at all stages of dental plaque development.Removal of dental plaque by routine oral hygiene procedures is followed by a repetition of a species succession that starts with initially colonizing streptococci and actinomyces (5, 16). Other species follow as early, middle, and late colonizers, which establishes the following developmental process: successive attachment of saliva-suspended species to already attached bacteria and formation of multispecies communities.Attachment is a critical event essential to preventing the bacteria from being swallowed by salivary flow. Initial colonizers bind to host-derived receptors in the salivary pellicle coating of the tooth enamel. The remainder of typical plaque development occurs by accretion of saliva-suspended species and growth of attached bacteria, thereby increasing the microbial diversity. Adherence of suspended single cells to attached cells is called coadhesion (1). Some suspended cells are already coaggregated and adhere to attached cells as coaggregates; coaggregation is defined as the specific cell-to-cell recognition and adherence of genetically distinct cell types (8). All human oral bacterial species exhibit coaggregation. For example, Streptococcus oralis coaggregates with Streptococcus gordonii (intrageneric coaggregation). Both species pair with Actinomyces oris (intergeneric coaggregation), and all of them coaggregate with Fusobacterium nucleatum (multigeneric coaggregation). Multispecies communities composed of coaggregating species characterize dental plaque biofilms in vivo (3, 17, 18).To increase our understanding of interactions among species, we have employed two in vitro model systems and are testing numerous combinations of seven species for their ability to grow on saliva as their sole nutritional source (20, 21). First, we reported that F. nucleatum (middle colonizer) failed to grow when paired with S. oralis but grew well when A. oris was included in the three-species biofilm (20), indicating specificity by F. nucleatum for the presence of a particular initial colonizer. Recently, we showed that Aggregatibacter actinomycetemcomitans (late colonizer and periodontopathogen) exhibited mutualistic relationships with F. nucleatum and Veillonella sp. (early colonizer and commensal organism), illustrating the ability of commensals and pathogens to grow together (21).Porphyromonas gingivalis, another periodontopathogen, forms three-species communities with F. nucleatum and S. gordonii (11). Proteomics of P. gingivalis in this three-species community revealed a broad increase in proteins involved in protein synthesis, suggesting that a multispecies relationship is advantageous for the porphyromonad (11). This research group had previously reported the presence of differentially regulated porphyromonad genes when P. gingivalis and S. gordonii were together in biofilms (22). Thus, P. gingivalis responds to the presence of other oral species.P. gingivalis is detected in dental plaque samples within 6 h after professional tooth cleaning (5, 13), and its numbers increase in periodontally diseased sites (15). It forms biofilms with S. gordonii but not with Streptococcus mutans (12) or Streptococcus cristatus (23). P. gingivalis required a preformed streptococcal substratum for its incorporation into a biofilm (12). Partner specificity was also noted among four fresh isolates of P. gingivalis, which showed no coaggregation with a variety of oral actinomyces, aggregatibacteria, capnocytophagae, and streptococci (9) but coaggregated with F. nucleatum (7, 10). We show here that P. gingivalis exhibits widespread mutualism with initial, early, middle, and late colonizers but also shows specificity with initially colonizing streptococci, which could help explain its early appearance in the development of dental plaque biofilms. The relationship of porphyromonads with initial, early, middle, and later colonizers during biofilm growth on saliva as a sole nutritional source has not been explored previously. We hypothesize that the ability of P. gingivalis to coaggregate with S. gordonii and A. oris (initial colonizers), Veillonella sp. (early colonizer), F. nucleatum (middle colonizer), and A. actinomycetemcomitans (late colonizer) allows these bacteria to form multispecies biofilm communities.  相似文献   

10.
牙菌斑生物膜是附着于牙釉质表面,由复杂的微生物群落构成的一种聚集体。牙菌斑生物膜的形成与生长对口腔健康有着直接或间接的影响,许多研究证实口腔疾病如龋齿和牙周病都与细菌的积累及牙菌斑的形成有关。在牙菌斑生物膜形态建成过程中,牙齿表面最初的定殖菌对生物膜的微生物组成和结构至关重要,这些初级定殖菌决定了后续与之结合形成共生体的微生物种类和数量。不同的微生物组成可能在与生物膜形成相关的口腔病理状况中发挥不同的作用。因此,本文就牙菌斑生物膜的生长及控制进行综述,介绍其微生物的早期定殖和成熟过程、以及通过物理和化学方法对牙菌斑生物膜的控制,以期为了解牙菌斑生物膜的形成机制及相关口腔疾病的预防和治疗提供有价值的参考。  相似文献   

11.
Black tooth stain is a characteristic extrinsic discoloration commonly seen on the cervical enamel following the contour of the gingiva. To investigate the relationship between black tooth stain and the oral microbiota, we used 16S rRNA gene sequencing to compare the microbial composition of dental plaque and saliva among caries-free children with and without black stain. Dental plaque and saliva, as well as black stain, were sampled from 10 children with and 15 children without black stain. Data were analyzed using the pipeline tool MOTHUR. Student’s t-test was used to compare alpha diversities and the Mann-Whitney U test to compare the relative abundances of the microbial taxa. A total of 10 phyla, 19 classes, 32 orders, 61 families and 102 genera were detected in these samples. Shannon and Simpson diversity were found to be significantly lower in saliva samples of children with black stain. Microbial diversity was reduced in the black stain compared to the plaque samples. Actinomyces, Cardiobacterium, Haemophilus, Corynebacterium, Tannerella and Treponema were more abundant and Campylobacter less abundant in plaque samples of children with black stain. Principal component analysis demonstrated clustering among the dental plaque samples from the control group, while the plaque samples from the black stain group were not and appeared to cluster into two subgroups. Alterations in oral microbiota may be associated with the formation of black stain.  相似文献   

12.
Periodontal disease (PD) is a significant problem in dogs affecting between 44% and 63.6% of the population. The main etiological agent for PD is plaque, a microbial biofilm that colonizes teeth and causes inflammation of the gingiva. Understanding how this biofilm initiates on the tooth surface is of central importance in developing interventions against PD. Although the stages of plaque development on human teeth have been well characterized little is known about how canine plaque develops. Recent studies of the canine oral microbiome have revealed distinct differences between the canine and human oral environments and the bacterial communities they support, particularly with respect to healthy plaque. These differences mean knowledge about the nature of plaque formation in humans may not be directly translatable to dogs. The aim of this study was to identify the bacterial species important in the early stages of canine plaque formation in vivo and then use isolates of these species in a laboratory biofilm model to develop an understanding of the sequential processes which take place during the initial colonization of enamel. Supra-gingival plaque samples were collected from 12 dogs at 24 and 48 hour time points following a full mouth descale and polish. Pyrosequencing of the 16S rDNA identified 134 operational taxonomic units after statistical analysis. The species with the highest relative abundance were Bergeyella zoohelcum, Neisseria shayeganii and a Moraxella species. Streptococcal species, which tend to dominate early human plaque biofilms, had very low relative abundance. In vitro testing of biofilm formation identified five primary colonizer species, three of which belonged to the genus Neisseria. Using these pioneer bacteria as a starting point, viable two and three species communities were developed. Combining in vivo and in vitro data has led us to construct novel models of how the early canine plaque biofilm develops.  相似文献   

13.
Investigations of interbacterial adhesion in dental plaque development are currently limited by the lack of a convenient assay to screen the multitude of species present in oral biofilms. To overcome this limitation, we developed a solid-phase fluorescence-based screening method to detect and identify coadhesive partner organisms in mixed-species biofilms. The applicability of this method was demonstrated using coaggregating strains of type 2 fimbrial adhesin-bearing actinomyces and receptor polysaccharide (RPS)-bearing streptococci. Specific adhesin/receptor-mediated coadhesion was detected by overlaying bacterial strains immobilized to a nitrocellulose membrane with a suspended, fluorescein-labeled bacterial partner strain. Coadhesion was comparable regardless of which cell type was labeled and which was immobilized. Formaldehyde treatment of bacteria, either in suspension or immobilized on nitrocellulose, abolished actinomyces type 2 fimbrial adhesin but not streptococcal RPS function, thereby providing a simple method for assigning complementary adhesins and glycan receptors to members of a coadhering pair. The method''s broader applicability was shown by overlaying colony lifts of dental plaque biofilm cultures with fluorescein-labeled strains of type 2 fimbriated Actinomyces naeslundii or RPS-bearing Streptococcus oralis. Prominent coadhesion partners included not only streptococci and actinomyces, as expected, but also other bacteria not identified in previous coaggregation studies, such as adhesin- or receptor-bearing strains of Neisseria pharyngitis, Rothia dentocariosa, and Kingella oralis. The ability to comprehensively screen complex microbial communities for coadhesion partners of specific microorganisms opens a new approach in studies of dental plaque and other mixed-species biofilms.  相似文献   

14.
Candida albicans has been detected in root carious lesions. The current study aimed to explore the action of this fungal species on the microbial ecology and the pathogenesis of root caries. Here, by analyzing C. albicans in supragingival dental plaque collected from root carious lesions and sound root surfaces of root-caries subjects as well as caries-free individuals, we observed significantly increased colonization of C. albicans in root carious lesions. Further in vitro and animal studies showed that C. albicans colonization increased the cariogenicity of oral biofilm by altering its microbial ecology, leading to a polymicrobial biofilm with enhanced acidogenicity, and consequently exacerbated tooth demineralization and carious lesion severity. More importantly, we demonstrated that the cariogenicity-promoting activity of C. albicans was dependent on PHR2. Deletion of PHR2 restored microbial equilibrium and led to a less cariogenic biofilm as demonstrated by in vitro artificial caries model or in vivo root-caries rat model. Our data indicate the critical role of C. albicans infection in the occurrence of root caries. PHR2 is the major factor that determines the ecological impact and caries-promoting activity of C. albicans in a mixed microbial consortium.Subject terms: Biofilms, Bacteria, Fungi  相似文献   

15.
16.
The aim of this study was to examine the diffusion of macromolecules through an in vitro biofilm model of supragingival plaque. Polyspecies biofilms containing Actinomyces naeslundii, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus sobrinus, Veillonella dispar, and Candida albicans were formed on sintered hydroxyapatite disks and then incubated at room temperature for defined periods with fluorescent markers with molecular weights ranging from 3,000 to 900,000. Subsequent examination by confocal laser scanning microscopy revealed that the mean square penetration depths for all tested macromolecules except immunoglobulin M increased linearly with time, diffusion coefficients being linearly proportional to the cube roots of the molecular weights of the probes (range, 10,000 to 240,000). Compared to diffusion in bulk water, diffusion in the biofilms was markedly slower. The rate of diffusion for each probe appeared to be constant and not a function of biofilm depth. Analysis of diffusion phenomena through the biofilms suggested tortuosity as the most probable explanation for retarded diffusion. Selective binding of probes to receptors present in the biofilms could not explain the observed extent of retardation of diffusion. These results are relevant to oral health, as selective attenuated diffusion of fermentable carbohydrates and acids produced within dental plaque is thought to be essential for the development of carious lesions.  相似文献   

17.

Background  

Glucosyltransferases (Gtfs), enzymes that produce extracellular glucans from dietary sucrose, contribute to dental plaque formation byStreptococcus gordoniiandStreptococcus mutans. The alpha-amylase-binding protein A (AbpA) ofS. gordonii, an early colonizing bacterium in dental plaque, interacts with salivary amylase and may influence dental plaque formation by this organism. We examined the interaction of amylase and recombinant AbpA (rAbpA), together with Gtfs ofS. gordoniiandS. mutans.  相似文献   

18.
Biolog technology was applied to measure the metabolic similarity of plaque biofilm microcosms, which model the complex properties of dental plaque in vivo. The choice of Biolog plate, incubation time, and incubation conditions strongly influenced utilization profiles. For plaque biofilm microcosms, Biolog GP2 plates incubated anaerobically in an H2-free atmosphere gave the clearest profile. To test the application of the Biolog GP2 assay, plaque microcosms were developed under different nutrient conditions in which the frequency of sucrose application was varied. Cluster analysis of Biolog GP2 data from 10 microcosm biofilms correlated with sucrose frequency. Aciduric bacteria (Streptococcus mutans plus lactobacilli) predominated in the plaques receiving high-frequency sucrose applications. Agreement between the Biolog GP2 groupings with nutrient and compositional changes suggests that Biolog analysis is a valuable technique for analyzing the metabolic similarity of dental plaque biofilm microcosms and other high-nutrient or predominantly anaerobic ecosystems.  相似文献   

19.
LuxS-Based Signaling Affects Streptococcus mutans Biofilm Formation   总被引:2,自引:0,他引:2       下载免费PDF全文
Streptococcus mutans is implicated as a major etiological agent in human dental caries, and one of the important virulence properties of this organism is its ability to form biofilms (dental plaque) on tooth surfaces. We examined the role of autoinducer-2 (AI-2) on S. mutans biofilm formation by constructing a GS-5 luxS-null mutant. Biofilm formation by the luxS mutant in 0.5% sucrose defined medium was found to be markedly attenuated compared to the wild type. Scanning electron microscopy also revealed that biofilms of the luxS mutant formed larger clumps in sucrose medium compared to the parental strain. Therefore, the expression of glucosyltransferase genes was examined and the gtfB and gtfC genes, but not the gtfD gene, in the luxS mutant were upregulated in the mid-log growth phase. Furthermore, we developed a novel two-compartment system to monitor AI-2 production by oral streptococci and periodontopathic bacteria. The biofilm defect of the luxS mutant was complemented by strains of S. gordonii, S. sobrinus, and S. anginosus; however, it was not complemented by S. oralis, S. salivarius, or S. sanguinis. Biofilm formation by the luxS mutant was also complemented by Porphyromonas gingivalis 381 and Actinobacillus actinomycetemcomitans Y4 but not by a P. gingivalis luxS mutant. These results suggest that the regulation of the glucosyltransferase genes required for sucrose-dependent biofilm formation is regulated by AI-2. Furthermore, these results provide further confirmation of previous proposals that quorum sensing via AI-2 may play a significant role in oral biofilm formation.  相似文献   

20.
Streptococcus mutans is associated with dental caries. A cariogenic biofilm, in particular, has been studied extensively for its role in the formation of dental caries. Herbal extracts such as Cudrania tricuspidata, Sophora flavescens, Ginkgo biloba, and Betula Schmidtii have been used as a folk remedy for treating diseases. The purpose of this study was to evaluate and compare the antibacterial activity of herbal extracts against normal oral streptococci, planktonic and biofilm of S. mutans. Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Streptococcus sanguinis, and S. mutans were cultivated with brain heart infusion broth and susceptibility assay for the herbal extracts was performed according to the protocol of Clinical and Laboratory Standard Institute. Also, S. mutans biofilm was formed on a polystyrene 12-well plate and 8-well chamber glass slip using BHI broth containing 2% sucrose and 1% mannose after conditioning the plate and the glass slip with unstimulated saliva. The biofilm was treated with the herbal extracts in various concentrations and inoculated on Mitis-Salivarius bacitracin agar plate for enumeration of viable S. mutans by counting colony forming units. Planktonic S. mutans showed susceptibility to all of the extracts and S. mutans biofilm exhibited the highest level of sensitivity for the extracts of S. flavescens. The normal oral streptococci exhibited a weak susceptibility in comparison to S. mutans. S. oralis, however, was resistant to all of the extracts. In conclusion, the extract of S. flavescens may be a potential candidate for prevention and management of dental caries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号