首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

To systematically evaluate the visual performance of aspheric AcrySof IQ and spherical AcrySof Natural intraocular lens (IOL) after cataract surgery.

Methodology/Principal Findings

Potential randomized controlled trials (RCTs) that involved implanting AcrySof IQ and AcrySof Natural were searched from PubMed, Web of science, EMBASE, Chinese Science and Technology Periodicals Databases and Cochrane Central Register of Controlled Trials. The methodological quality of the studies was assessed by the Jadad method. Standardized mean differences (SMDs) with 95% confidence intervals (CIs) of best-corrected visual acuity (BCVA), contrast sensitivity and spherical aberration were pooled using a random-effects model. Seven studies were identified and analyzed to compare AcrySof IQ (236 eyes) with AcrySof Natural (232 eyes) after phacoemulsification. There was no significant difference in postoperative BCVA between AcrySof IQ and AcrySof Natural (p =0.137) after a follow up of 3 months. For contrast sensitivity, these differences reached statistical significance under photopic conditions at two spatial frequencies (3 cycles per degree (cpd), 6 cpd, 12 cpd, and 18 cpd; p =0.022, p =0.017, p = 0.065, and p=0.191, respectively) and under mesopic conditions at three spatial frequencies (3 cpd, 6 cpd, 12 cpd, and 18 cpd; p =0.007, p =0.033, p =0.030, and p =0.080, respectively). Eyes with AcrySof IQ also had statistically significant less spherical aberration than eyes with AcrySof Natural (p<0.001). Sensitivity analysis showed that the results were relatively stable and reliable.

Conclusions/Significance

The overall findings indicate that AcrySof IQ with a modified aspheric surface induced significantly less spherical aberration than AcrySof Natural. Contrast sensitivity in eyes with AcrySof IQ is better than that in eyes with AcrySof Natural, especially under mesopic conditions.  相似文献   

2.
Glaucoma is a heterogeneous eye disease characterized by optic nerve atrophy and visual field defects. The disease damages the retinal ganglion cells (RGC) and their functional axons. Heat shock proteins 70 (HSP70) are molecular chaperons that could have a protective effect in the development of glaucoma. Polymorphisms of HSP70 may alter protein function or expression and are associated with the susceptibility to glaucoma. The purpose of this study was to investigate whether the HSPA1B 1267A/G (rs1061581) and HSPA1L 2437T/C (rs2227956) variants contribute to glaucoma susceptibility. Genomic DNA samples from 169 patients with glaucoma and 178 healthy controls were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Here we show that the presence of HSPA1B 1267GG genotype significantly increases the risk of glaucoma (OR = 3.16, 95% CI = 1.45–6.89, p = 0.003). The prevalence of HSPA1L 2437T/C genotypes in patients and controls did not differ significantly (p = 0.31, χ2 = 2.32). However, large population based studies are required for further evaluation and confirmation of our finding.  相似文献   

3.
PurposeTo evaluate the functional magnetic resonance imaging (fMRI) response to binocular visual stimulation and the association thereof with structural ocular findings and psychophysical test results in patients with glaucoma, and controls.MethodsCross-sectional study. Participants underwent a complete ophthalmic examination, including Humphrey 24-2 visual field (VF) testing and optical coherence tomography. Binocular VF in each quadrant was determined using an integrated method. Patients with glaucoma were assigned to three subgroups: initial, asymmetrical and severe glaucoma. Regions of interest (ROIs) were determined anatomically. fMRI (3 T) was performed using a bilaterally presented polar angle stimulus, and the accompanying changes in blood oxygen level-dependent (BOLD) signals were obtained from the occipital poles and calcarine ROIs. We used generalized estimation equation models to compare anatomical and functional data between the groups.ResultsA total of 25 subjects were enrolled, of whom 17 had glaucoma and 8 were controls. Significant associations between quadrant binocular VF sensitivities and fMRI responses were found in the occipital pole ROIs (p = 0.033) and the calcarine ROIs (p = 0.045). In glaucoma severity subgroup analysis, retinal nerve fiber layer (RNFL) thickness was associated with the BOLD response of the calcarine and occipital pole ROIs (p = 0.002 and 0.026, respectively). The initial and asymmetrical glaucoma subgroups had similar binocular VF sensitivities and RNFL thicknesses, but distinct BOLD responses.ConclusionsThe response of the visual cortex to binocular stimulation was associated with binocular VF sensitivity. RNFL thickness was associated with the BOLD response of the calcarine and occipital pole ROIs.  相似文献   

4.
This study analyzed the fluctuation of the achromatic visual contrast sensitivity (CS) of adult males (M = 23.42 ± 2.6 years) during a daily period. Twenty-eight volunteers were divided into three groups according to circadian typology (CT): moderate morning (MM; n = 8); intermediate (I; n = 10) and moderate evening (ME; n = 10). The Pittsburgh Sleep Quality Index was used to evaluate sleep quality, and the Horne and Ostberg Morningness-Eveningness Questionnaire was used to measure CT. To measure CS, we used Metropsis software version 11.0 with vertical sinusoidal grids of 0.2, 0.6, 1, 3.1, 6.1, 8.8, 13.2 and 15.6 cycles per degree of visual angle (cpd). The stimuli were presented on a cathode ray tube (CRT) color video monitor with a 19-inch flat screen, a 1024 × 786 pixel resolution, a 100 Hz refresh rate and a photopic luminance of 39.6 cd/m2. It was inferred that there is a tendency for visual contrast to vary according to daily rhythmicity and CT, mainly for the median spatial frequencies (1.0 cpd, χ2 = 9.93, p < 0.05 and 3.1 cpd, χ2 = 10.33, p < 0.05) and high spatial frequencies (13.2 cpd, χ2 = 11.54, p < 0.05) of ME participants. ME participants had minimal visual contrast sensitivity during the morning shift and a progressive increase from afternoon to night.  相似文献   

5.
The present study deals with the topography of retinal ganglion cells (GCs) and spatial resolution in the smelt Hypomesus japonicus. The eyes and retinae were examined by light microscopy and computerized tomography. DAPI labelling was used to visualize cell nuclei in the ganglion cell and inner plexiform layers. Two zones of increased GC density in the nasal and temporal retina were bridged by a horizontal streak with the GC density ranging from 5600 to 8000 cells/mm2. The maximum cell density (area retinae temporalis) ranged from 9492 to 14,112 cells/mm2, and the total number of GCs varied from 286 x 103 to 326 x 103 cells in three individuals. The theoretical anatomical spatial resolution (the anatomical estimate of the upper limit of visual acuity) was minimum in the ventral periphery (smaller fish, 1.43 cpd; larger fish, 1.37 cpd) and maximum in area retinae temporalis (smaller fish, 2.83 cpd; larger fish, 2.41 cpd). The relatively high density of GCs and presence of the horizontal streak and area retinae temporalis in the H. japonicus are consistent with its highly visual behaviour. The present findings contribute to better understanding of the factors affecting the topography of retinal ganglion cells and mechanisms of visual adaptation in fish.  相似文献   

6.
ABSTRACT

This study evaluated visual sensitivity to luminance contrast during a daily period. Twenty-eight young male adults (M = 24.85; SD = 2.4) with normal color vision and 20/20 visual acuity participated in this study. The circadian pattern was assessed using the Karolinska Sleepiness Scale (KSS), the Pittsburgh Sleep Quality Index (PSQI), and a sleep diary. To measure the luminance contrast, we used version 11.0 of the Metropsis software with sine-element frequency stimuli for spatial frequencies of 0.2, 0.6, 1, 3.1, 6.1, 8.8, 13.2, and 15.6 cycles per degree of visual angle (cpd). The stimuli were presented on a 19-inch color cathode ray tube (CRT) video monitor with a resolution of 1024 × 786 pixels, an update rate of 100 Hz, and a photopic luminance of 39.6 cd/m2. There was a significant difference in KSS on the weekdays [χ2(2) = 20.27; p = .001] and in the luminance contrast for frequencies of 13.2 cpd [χ2(2) = 8.27; p = .001] and 15.6 cpd [χ2(2) = 13.72; p = .041]. The results showed greater stability of the measurement during the afternoon and a reduction in the visual sensitivity in the high spatial frequencies during the night.  相似文献   

7.
PurposeThe current study evaluated the effect of lens-induced high myopia (IHM) on the activity of the occipital visual cortex during two visual stimuli presentations to the subjects. This was done by measuring the Blood Oxygenation Level Dependent (BOLD) signal using functional MRI (fMRI).MethodsBOLD contrast fMRI was performed with a 1.5T MRI scanner on 12 emmetropic subjects (refractive error <±0.25Diopter) with no history of neurologic disorder. IHM conditions were applied to subjects by three convex lenses of +5D, +7D and +10D. Visual stimuli with 0.34 cpd and 1.84 cpd spatial frequencies (SF) were presented as a block paradigm to the participants in three IHM states and normal vision state during fMRI data acquisition. Resultant fMRI data were compared among different refractive states.ResultsData analysis showed that IHM did not cause a significant change in the visual cortex activity throughout the presentation of 0.34 cpd SF visual stimulus and BOLD signal intensity remained approximately constant (p = 0.17). Although, fMRI responses to visual stimuli with spatial frequency of 1.84 cpd demonstrated that visual cortex activity was significantly reduced in IHM states compared to normal vision (p = 0.01), the results showed no significant differences between three different values of IHM.ConclusionsThis study shows severe blurring caused by lens induced high myopia can decrease BOLD signal intensity depending on the visual stimulus pattern details. However in the low and moderate range of spatial frequencies, blur increment from +5D up to +10D is not associated with further reduction in the BOLD signal of the occipital visual cortex.  相似文献   

8.
Primary glaucoma is one of the most common causes of irreversible blindness both in humans and in dogs. Glaucoma is an optic neuropathy affecting the retinal ganglion cells and optic nerve, and elevated intraocular pressure is commonly associated with the disease. Glaucoma is broadly classified into primary open angle (POAG), primary closed angle (PCAG) and primary congenital glaucoma (PCG). Human glaucomas are genetically heterogeneous and multiple loci have been identified. Glaucoma affects several dog breeds but only three loci and one gene have been implicated so far. We have investigated the genetics of primary glaucoma in the Norwegian Elkhound (NE). We established a small pedigree around the affected NEs collected from Finland, US and UK and performed a genome-wide association study with 9 cases and 8 controls to map the glaucoma gene to 750 kb region on canine chromosome 20 (praw = 4.93×10−6, pgenome = 0.025). The associated region contains a previously identified glaucoma gene, ADAMTS10, which was subjected to mutation screening in the coding regions. A fully segregating missense mutation (p.A387T) in exon 9 was found in 14 cases and 572 unaffected NEs (pFisher = 3.5×10−27) with a high carrier frequency (25.3%). The mutation interrupts a highly conserved residue in the metalloprotease domain of ADAMTS10, likely affecting its functional capacity. Our study identifies the genetic cause of primary glaucoma in NEs and enables the development of a genetic test for breeding purposes. This study establishes also a new spontaneous canine model for glaucoma research to study the ADAMTS10 biology in optical neuropathy.  相似文献   

9.

Background

Loss of vision in glaucoma is due to apoptotic retinal ganglion cell loss. While p53 modulates apoptosis, gene association studies between p53 variants and glaucoma have been inconsistent. In this study we evaluate the association between a p53 variant functionally known to influence apoptosis (codon 72 Pro/Arg) and the subset of primary open angle glaucoma (POAG) patients with early loss of central visual field.

Methods

Genotypes for the p53 codon 72 polymorphism (Pro/Arg) were obtained for 264 POAG patients and 400 controls from the U.S. and in replication studies for 308 POAG patients and 178 controls from Australia (GIST). The glaucoma patients were divided into two groups according to location of initial visual field defect (either paracentral or peripheral). All cases and controls were Caucasian with European ancestry.

Results

The p53-PRO/PRO genotype was more frequent in the U.S. POAG patients with early visual field defects in the paracentral regions compared with those in the peripheral regions or control group (p = 2.7×10−5). We replicated this finding in the GIST cohort (p  = 7.3×10−3, and in the pooled sample (p = 6.6×10−7) and in a meta-analysis of both the US and GIST datasets (1.3×10−6, OR 2.17 (1.58–2.98 for the PRO allele).

Conclusions

These results suggest that the p53 codon 72 PRO/PRO genotype is potentially associated with early paracentral visual field defects in primary open-angle glaucoma patients.  相似文献   

10.

Purpose

This study was conducted in order to compare relationships between the macular visual field (VF) mean sensitivity measured by MAIATM (Macular Integrity Assessment), MP-3, or Humphry field analyzer (HFA) and the ganglion cell and inner plexiform layer (GCA) thicknesses.

Methods

This cross-sectional study examined 73 glaucoma patients and 19 normal subjects. All subjects underwent measurements for GCA thickness by Cirrus HD-OCT and static threshold perimetry using MAIATM, MP-3, or HFA. VF and OCT in the retinal view were used to examine both the global relationship between the VF sensitivity and GCA thickness, and the superior hemiretina and inferior hemiretina. The relationship between the GCA thickness and macular sensitivity was examined by Spearman correlation analysis.

Results

For each instrument, statistically significant macular VF sensitivity (dB) and GCA thickness relationships were observed using the decibel scale (R = 0.547–0.687, all P < 0.001). The highest correlation for the global (R = 0.682) and the superior hemiretina (R = 0.594) GCA thickness-VF mean sensitivity was observed by the HFA. The highest correlation for the inferior hemiretina (R = 0.687) GCA thickness-VF mean sensitivity was observed by the MP-3. Among the three VF measurement instruments, however, no significant differences were found for the structure-function relationships.

Conclusions

All three VF measurement instruments found similar structure-function relationships in the central VF.  相似文献   

11.

Objective

To examine microcystic inner nuclear layer (INL) changes in glaucomatous eyes and to determine associated factors.

Design

Retrospective, cross-sectional, observational study.

Methods

Two hundred seventeen eyes of 133 patients with primary open angle glaucoma (POAG), 41 eyes of 32 patients with preperimetric glaucoma and 181 normal eyes of 117 subjects were ultimately included. Microcystic INL lesions were examined with infrared fundus images and with 19 vertical spectral domain optical coherence tomography (SD-OCT) images in the macular area.

Results

Microcystic INL changes were observed in 6.0% of eyes with POAG, but none of the normal eyes or eyes with preperimetric glaucoma showed microcystic INL changes. The proportion of eyes with advanced glaucoma was significantly larger (P = 0.013) in eyes with microcystic lesions than without. The visual field mean deviation (MD) slope was also significantly worse (P = 0.027) in eyes with microcystic lesions. No significant differences were observed in age, sex, refraction, axial length, intraocular pressure, or MD value between eyes with and without microcystic INL lesions. In several cases, microcystic INL lesions occurred along with glaucomatous visual field progression. The retinal nerve fiber layer (RNFL) thickness (P = 0.013) and ganglion cell layer (GCL) + inner plexiform layer thickness (P = 0.023) were significantly lower in areas with microcystic lesions than without. The INL was also significantly thicker (P = 0.002) in areas with microcystic lesions.

Conclusions

Microcystic INL lesions in glaucomatous eyes are closely associated with RNFL and GCL thinning and correlated with worse MD slope. These INL lesions may indicate focal and progressive damage in glaucoma.  相似文献   

12.

Background

To investigate the effect of cataract on the ability of spatial and temporal contrast sensitivity tests used to detect early glaucoma.

Methods

Twenty-seven glaucoma subjects with early cataract (mean age 60 ±10.2 years) which constituted the test group were recruited together with twenty-seven controls (cataract only) matched for age and cataract type from a primary eye care setting. Contrast sensitivity to flickering gratings at 20 Hz and stationary gratings with and without glare, were measured for 0.5, 1.5 and 3 cycles per degree (cpd) in central vision. Perimetry and structural measurements with the Heidelberg Retinal Tomograph (HRT) were also performed.

Results

After considering the effect of cataract, contrast sensitivity to stationary gratings was reduced in the test group compared with controls with a statistically significant mean difference of 0.2 log units independent of spatial frequency. The flicker test showed a significant difference between test and control group at 1.5 and 3 cpd (p = 0.019 and p = 0.011 respectively). The percentage of glaucoma patients who could not see the temporal modulation was much higher compared with their cataract only counterparts. A significant correlation was found between the reduction of contrast sensitivity caused by glare and the Glaucoma Probability Score (GPS) as measured with the HRT (p<0.005).

Conclusions

These findings indicate that both spatial and temporal contrast sensitivity tests are suitable for distinguishing between vision loss as a consequence of glaucoma and vision loss caused by cataract only. The correlation between glare factor and GPS suggests that there may be an increase in intraocular stray light in glaucoma.  相似文献   

13.
Glaucoma is a complex disease affecting an estimated 70 million people worldwide, characterised by the progressive degeneration of retinal ganglion cells and accompanying visual field loss. The common site of damage to retinal ganglion cells is thought to be at the optic nerve head, however evidence from other optic neuropathies and neurodegenerative disorders suggests that dendritic structures undergo a prolonged period of atrophy that may accompany or even precede soma loss and neuronal cell death. Using the DBA/2J mouse model of glaucoma this investigation aims to elucidate the impact of increasing intraocular pressure on retinal ganglion cell dendrites using DBA/2J mice that express YFP throughout the retinal ganglion cells driven by Thy1 (DBA/2J.Thy1(YFP)) and DiOlistically labelled retinal ganglion cells in DBA/2J mice. Here we show retinal ganglion cell dendritic degeneration in DiOlistically labelled DBA/2J retinal ganglion cells but not in the DBA/2J.Thy1(YFP) retinal ganglion cells suggesting that a potential downregulation of Thy1 allows only ‘healthy’ retinal ganglion cells to express YFP. These data may highlight alternative pathways to retinal ganglion cell loss in DBA/2J glaucoma.  相似文献   

14.
Differences in synchronous movement between the trunk and lower limb during lifting have been reported in chronic low back pain (CLBP) patients compared to healthy people. However, the relationship between movement coordination and disability in CLBP patients has not been investigated. A cross-sectional study was conducted to compare regional lumbar and lower limb coordination between CLBP (n = 43) and control (n = 29) groups. The CLBP group was divided into high- and low-disability groups based on their Oswestry Disability Index (ODI) score. The mean absolute relative phase (MARP) angles and mean deviation phase (DP) between the (1) lumbar spine and hip, and (2) hip and knee were measured. The relationship between MARP angle and DP and ODI were investigated using linear regression. The higher-disability CLBP group demonstrated significantly greater lumbar-hip MARP angles than the lower-disability CLBP group (mean difference = 12.97, % difference = 36, p = 0.041, 95% CI [2.97, 22.98]). The higher-disability CLBP group demonstrated significantly smaller hip-knee DP than controls (mean difference = 0.11, % difference = 76, p = 0.011, 95% CI [0.03, 0.19]). There were no significant differences in lumbar-hip and hip-knee MARP and DP between the lower-disability CLBP and control groups. Lumbar-hip MARP was positively associated with ODI (R2 = 0.092, β = 0.30, p = 0.048). High-disability CLBP patients demonstrated decreased lumbar-hip movement coordination and stiffer hip-knee movement during lifting than low-disability CLBP patients and healthy controls.  相似文献   

15.
Glaucoma is a leading cause of blindness worldwide, characterized by retinal ganglion cell degeneration and damage to the optic nerve. We investigated the non-image forming visual system in an experimental model of glaucoma in rats induced by weekly injections of chondroitin sulphate (CS) in the eye anterior chamber. Animals were unilaterally or bilaterally injected with CS or vehicle for 6 or 10 weeks. In the retinas from eyes injected with CS, a similar decrease in melanopsin and Thy-1 levels was observed. CS injections induced a similar decrease in the number of melanopsin-containing cells and superior collicular retinal ganglion cells. Experimental glaucoma induced a significant decrease in the afferent pupil light reflex. White light significantly decreased nocturnal pineal melatonin content in control and glaucomatous animals, whereas blue light decreased this parameter in vehicle- but not in CS-injected animals. A significant decrease in light-induced c-Fos expression in the suprachiasmatic nuclei was observed in glaucomatous animals. General rhythmicity and gross entrainment appear to be conserved, but glaucomatous animals exhibited a delayed phase angle with respect to lights off and a significant increase in the percentage of diurnal activity. These results indicate the glaucoma induced significant alterations in the non-image forming visual system.  相似文献   

16.
Lower limb amputation substantially disrupts motor and proprioceptive function. People with lower limb amputation experience considerable impairments in walking ability, including increased fall risk. Understanding the biomechanical aspects of the gait of these patients is crucial in improving their gait function and their quality of life. In the present study, 9 persons with unilateral transtibial amputation and 13 able-bodied controls walked on a large treadmill in a Computer Assisted Rehabilitation Environment (CAREN). While walking, subjects were either not perturbed, or were perturbed either by continuous mediolateral platform movements or by continuous mediolateral movements of the visual scene. Means and standard deviations of both step lengths and step widths increased significantly during both perturbation conditions (all p<0.001) for both groups. Measures of variability, local and orbital dynamic stability of trunk movements likewise exhibited large and highly significant increases during both perturbation conditions (all p<0.001) for both groups. Patients with amputation exhibited greater step width variability (p=0.01) and greater trunk movement variability (p=0.04) during platform perturbations, but did not exhibit greater local or orbital instability than healthy controls for either perturbation conditions. Our findings suggest that, in the absence of other co-morbidities, patients with unilateral transtibial amputation appear to retain sufficient sensory and motor function to maintain overall upper body stability during walking, even when substantially challenged. Additionally, these patients did not appear to rely more heavily on visual feedback to maintain trunk stability during these walking tasks.  相似文献   

17.
Although family studies and genome-wide association studies have shown that genetic factors play a role in glaucoma, it has been difficult to identify the specific genetic variants involved. We tested 669 single nucleotide polymorphisms (SNPs) from the region of chromosome 2 that includes the GLC1B glaucoma locus for association with primary open-angle glaucoma (POAG) and normal tension glaucoma (NTG) in the Japanese population. We performed a two-stage case-control study. The first cohort consisted of 123 POAG cases, 121 NTG cases and 120 controls: the second cohort consisted of 187 POAG cases, 286 NTG cases, and 271 controls. Out of six SNPs showing significant association with POAG in the first round screening, seven SNPs were tested in the second round. Rs678350 in the HK2 gene coding sequence showed significant allelic (p = 0.0027 in Stage Two, 2.7XE-4 in meta-analysis) association with POAG, and significant allelic (p = 4.7XE-4 in Stage Two, 1.0XE-5 in meta-analysis) association with NTG. Although alleles in the TMEM182 gene did not show significant association with glaucoma in the second round, subjects with the A/A allele in TMEM182 rs869833 showed worse visual field mean deviation (p = 0.01). Even though rs2033008 in the NCK2 gene coding sequence did not show significant association in the first round, it had previously shown association with NTG so it was tested for association with NTG in round 2 (p = 0.0053 in Stage Two). Immunohistochemistry showed that both HK2 and NCK2 are expressed in the retinal ganglion cell layer. Once multi-testing was taken into account, only HK2 showed significant association with POAG and NTG in Stage Two. Our data also support previous reports of NCK2 association with NTG, and raise questions about what role TMEM182 might play in phenotypic variability. Our data suggest that HK2 may play an important role in NTG in the Japanese population.  相似文献   

18.
Understanding how lower-limb amputation affects walking stability, specifically in destabilizing environments, is essential for developing effective interventions to prevent falls. This study quantified mediolateral margins of stability (MOS) and MOS sub-components in young individuals with traumatic unilateral transtibial amputation (TTA) and young able-bodied individuals (AB). Thirteen AB and nine TTA completed five 3-min walking trials in a Computer Assisted Rehabilitation ENvironment (CAREN) system under each of three test conditions: no perturbations, pseudo-random mediolateral translations of the platform, and pseudo-random mediolateral translations of the visual field. Compared to the unperturbed trials, TTA exhibited increased mean MOS and MOS variability during platform and visual field perturbations (p<0.010). AB exhibited increased mean MOS during visual field perturbations and increased MOS variability during both platform and visual field perturbations (p<0.050). During platform perturbations, TTA exhibited significantly greater values than AB for mean MOS (p<0.050) and MOS variability (p<0.050); variability of the lateral distance between the center of mass (COM) and base of support at initial contact (p<0.005); mean and variability of the range of COM motion (p<0.010); and variability of COM peak velocity (p<0.050). As determined by mean MOS and MOS variability, young and otherwise healthy individuals with transtibial amputation achieved lateral stability similar to that of their able-bodied counterparts during unperturbed and visually-perturbed walking. However, based on mean and variability of MOS, unilateral transtibial amputation was shown to have affected lateral walking stability during platform perturbations.  相似文献   

19.
A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.  相似文献   

20.
This work assesses whether the width and “permanence” of linear clearings affects the distribution and movement patterns of small, terrestrial vertebrates in a native South Australian woodland. We examined the influence of narrow (1.5 and 4.2 m), non-permanent seismic exploration tracks; and wide (6–7 and 12–15 m), permanent fire tracks. There were 1,007 captures of 14 species (four amphibians, six reptiles, four mammals) from 18,000 trap days/nights across 15 sites. Total species richness was highest adjacent to 6–7 m wide permanent tracks (8.3) and lowest in areas without clearings (5.3). There was heterogeneity of captures between track types (p < 0.008), species (p < 0.001), and species by track type (p < 0.001). Antechinus flavipes was most abundant adjacent to both types of permanent tracks, probably as a result of increased habitat complexity at these sites. Twenty-four percent of movements by recaptured A. flavipes involved track crossings. Animals crossed all track types; nevertheless, individuals were more likely to be recaptured on the same side of a track. Individuals were less likely to cross permanent tracks (p = 0.025 for 6–7 m and p = 0.008 for 12 to 15-m-wide tracks), with females being particularly inhibited. Although 11 % of 56 recaptured Rattus spp. had crossed a track, no individuals crossed the 12 to 15-m permanent tracks. In the habitat type studied here, narrow seismic lines may have a slightly positive effect on some ground-dwelling vertebrates, and do not appear to substantially inhibit movement. However, there is a need to carefully manage permanent tracks, which could isolate faunal populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号