首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Need for malaria vaccine necessitates the characterization of potential antigens of the Plasmodium parasite. Recently, we have identified several Plasmodium vivax tryptophan-rich antigens (PvTRAgs). Here, we describe the immunological characterization of hitherto undescribed two such antigens PvTRAg 35.2 and PvTRAg 80.6 which are respective homologue of Plasmodium falciparum merozoite associated tryptophan-rich antigen (PfMaTrA) and P. falciparum tryptophan and threonine rich antigen (PfTryThrA) involved in erythrocyte invasion. Each of the pvtrag genes is comprised of two exons where exon 2 encodes for major part of the protein. PvTRAg 35.2 and PvTRAg 80.6 showed 97.06% and 94.12% (n = 34) seropositivity rates, and 92.3% (n = 13) and 100% (n = 29) lymphoproliferative responses, respectively, among P. vivax exposed individuals. Geometric mean values of IL-12, IFN-γ, TNF-α, IL-4 and IL-10 in PBMC culture supernatants of P. vivax exposed individuals were 182.02, 60.3, 62.84, 196.01 and 177.17 pg/ml against PvTRAg 35.2 and 185.27, 58.15, 64.56, 142.01 and 157.2 pg/ml against PvTRAg 80.6 showing mixed immune response with distinct biased towards anti-inflammatory Th2 phenotype. The pvtrag 35.2 gene was highly conserved in the parasite population whereas pvtrag 80.6 showed minor variations in the N-terminal region but highly conserved in the C-terminal region containing tryptophan-rich domain.  相似文献   

2.
Block II of Plasmodium vivax merozoite surface protein 3α (PvMSP3α) is conserved and has been proposed as a potential candidate for a malaria vaccine. The present study aimed to compare sequence diversity in PvMSP3a block II at a local microgeographic scale in a village as well as from larger geographic regions (countries and worldwide). Blood samples were collected from asymptomatic carriers of P. vivax in a village at the western border of Thailand and PvMSP3α was amplified and sequenced. For population genetic analysis, 237 PvMSP3α block II sequences from eleven P. vivax endemic countries were analyzed. PvMSP3α sequences from 20 village-level samples revealed two length variant types with one type containing a large deletion in block I. In contrast, block II was relatively conserved; especially, some non-synonymous mutations were extensively shared among 11 parasite populations. However, the majority of the low-frequency synonymous variations were population specific. The conserved pattern of nucleotide diversity in block II sequences was probably due to functional/structural constraints, which were further supported by the tests of neutrality. Notably, a small region in block II that encodes a predicted B cell epitope was highly polymorphic and showed signs of balancing selection, signifying that this region might be influenced by the immune selection and may serve as a starting point for designing multi-antigen/stage epitope based vaccines against this parasite.  相似文献   

3.

Background

Malaria control efforts have a significant impact on the epidemiology and parasite population dynamics. In countries aiming for malaria elimination, malaria transmission may be restricted to limited transmission hot spots, where parasite populations may be isolated from each other and experience different selection forces. Here we aim to examine the Plasmodium vivax population divergence in geographically isolated transmission zones in Thailand.

Methodology

We employed the P. vivax merozoite surface protein 3β (PvMSP3β) as a molecular marker for characterizing P. vivax populations based on the extensive diversity of this gene in Southeast Asian parasite populations. To examine two parasite populations with different transmission levels in Thailand, we obtained 45 P. vivax isolates from Tak Province, northwestern Thailand, where the annual parasite incidence (API) was more than 2%, and 28 isolates from Yala and Narathiwat Provinces, southern Thailand, where the API was less than 0.02%. We sequenced the PvMSP3β gene and examined its genetic diversity and molecular evolution between the parasite populations.

Principal Findings

Of 58 isolates containing single PvMSP3β alleles, 31 sequence types were identified. The overall haplotype diversity was 0.77±0.06 and nucleotide diversity 0.0877±0.0054. The northwestern vivax malaria population exhibited extensive haplotype diversity (HD) of PvMSP3β (HD = 1.0). In contrast, the southern parasite population displayed a single PvMSP3β allele (HD = 0), suggesting a clonal population expansion. This result revealed that the extent of allelic diversity in P. vivax populations in Thailand varies among endemic areas.

Conclusion

Malaria parasite populations in a given region may vary significantly in genetic diversity, which may be the result of control and influenced by the magnitude of malaria transmission intensity. This is an issue that should be taken into account for the implementation of P. vivax control measures such as drug policy and vaccine development.  相似文献   

4.
Bora H  Garg S  Sen P  Kumar D  Kaur P  Khan RH  Sharma YD 《PloS one》2011,6(1):e16294
Tryptophan-rich proteins from several malarial parasites have been identified where they play an important role in host-parasite interaction. Structural characterization of these proteins is needed to develop them as therapeutic targets. Here, we describe a novel Plasmodium vivax tryptophan-rich protein named PvTRAg33.5. It is expressed by blood stage(s) of the parasite and its gene contains two exons. The exon 1 encodes for a 23 amino acids long putative signal peptide which is likely to be cleaved off whereas the exon 2 encodes for the mature protein of 252 amino acids. The mature protein contains B-cell epitopes which were recognized by the human immune system during P.vivax infection. The PvTRAg33.5 contains 24 (9.5%) tryptophan residues and six motifs whose patterns were similar among tryptophan-rich proteins. The modeled structure of the PvTRAg33.5 consists of a multidomain architecture which is stabilized by the presence of large number of tryptophan residues. The recombinant PvTRAg33.5 showed predominantly α helical structure and alpha helix to beta sheet transition at pH below 4.5. Protein acquires an irreversible non-native state at temperature more than 50°C at neutral pH. Its secondary and tertiary structures remain stable in the presence of 35% alcohol but these structures are destabilized at higher alcohol concentrations due to the disturbance of hydrophobic interactions between tryptophanyl residues. These structural changes in the protein might occur during its translocation to interact with other proteins at its final destination for biological function such as erythrocyte invasion.  相似文献   

5.
The newly identified GPI-anchored Plasmodium vivax merozoite surface protein 1 paralog (MSP1P) has a highly antigenic C-terminus that binds erythrocytes. To characterize the antigenicity and immunogenicity of two regions (PvMSP1P-19 and -33) of the highly conserved C-terminus of MSP1P relative to PvMSP1-19, 30 P. vivax malaria-infected patients and two groups of mice (immunized with PvMSP1P-19 or -33) were tested for IgG subclass antibodies against PvMSP1P-19 and -33 antigens. In the patients infected with P. vivax, IgG1 and IgG3 levels were significantly higher than those levels in healthy individuals, and were the predominant response to the two C-terminal fragments of PvMSP1P (p < 0.05). In mice immunized with PvMSP1P-19, IgG1 levels were the highest while IgG2b levels were similar to IgG1 levels. The levels of Th1 cytokines in mice immunized with PvMSP1P-19 or -33 were significantly higher than those in mice immunized with PvMSP1-19 (p < 0.05). Our results indicate that: (i) IgG1 and IgG3 (IgG2b in mice) are predominant IgG subclasses in both patients infected with P. vivax and mice immunized with PvMSP1P-19 or -33; (ii) the C-terminus of MSP1P induces a Th1-cytokine response. This immune profiling study provides evidence that MSP1P may be a potential candidate for vivax vaccine.  相似文献   

6.
Plasmodium vivax is a very common but non-cultivable malaria parasite affecting large human population in tropical world. To develop therapeutic reagents for this malaria, the parasite molecules involved in host-parasite interaction need to be investigated as they form effective vaccine or drug targets. We have investigated here the erythrocyte binding activity of a group of 15 different Plasmodium vivax tryptophan rich antigens (PvTRAgs). Only six of them, named PvTRAg, PvTRAg38, PvTRAg33.5, PvTRAg35.2 PvTRAg69.4 and PvATRAg74, showed binding to host erythrocytes. That the PvTRAgs binding to host erythrocytes was specific was evident from the competitive inhibition and saturation kinetics results. The erythrocyte receptors for these six PvTRAgs were resistant to trypsin and neuraminidase. These receptors were also chymotrypsin resistant except the receptors for PvTRAg38 and PvATRAg74 which were partially sensitive to this enzyme. The cross-competition studies showed that the chymotrypsin resistant RBC receptor for each of these two proteins was different. Altogether, there seems to be three RBC receptors for these six PvTRAgs and each PvTRAg has two RBC receptors. Both RBC receptors for PvTRAg, PvTRAg69.4, PvTRAg33.5, and PvTRAg35.2 were common to all these four proteins. These four PvTRAgs also shared one of their RBC receptors with PvTRAg38 as well as with PvATRAg74. The erythrocyte binding activity of these six PvTRAgs was inhibited by the respective rabbit polyclonal antibodies as well as by the natural antibodies produced by the P. vivax exposed individuals. It is concluded that only selective few PvTRAgs show erythrocyte binding activity involving different receptor molecules which can be blocked by the natural antibodies. Further studies on these receptor and ligands may lead to the development of therapeutic reagents for P. vivax malaria.  相似文献   

7.
Tryptophan-rich antigens play important role in host-parasite interaction. One of the Plasmodium vivax tryptophan-rich antigens called PvTRAg33.5 had earlier been shown to be predominantly of alpha helical in nature with multidomain structure, induced immune responses in humans, binds to host erythrocytes, and its sequence is highly conserved in the parasite population. In the present study, we divided this protein into three different parts i.e. N-terminal (amino acid position 24–106), middle (amino acid position 107–192), and C-terminal region (amino acid position 185–275) and determined the erythrocyte binding activity of these fragments. This binding activity was retained by the middle and C-terminal fragments covering 107 to 275 amino acid region of the PvTRAg33.5 protein. Eight non-overlapping peptides covering this 107 to 275 amino acid region were then synthesized and tested for their erythrocyte binding activity to further define the binding domains. Only two peptides, peptide P4 (at 171–191 amino acid position) and peptide P8 (at 255–275 amino acid position), were found to contain the erythrocyte binding activity. Competition assay revealed that each peptide recognizes its own erythrocyte receptor. These two peptides were found to be located on two parallel helices at one end of the protein in the modelled structure and could be exposed on its surface to form a suitable site for protein-protein interaction. Natural antibodies present in the sera of the P. vivax exposed individuals or the polyclonal rabbit antibodies against this protein were able to inhibit the erythrocyte binding activity of PvTRAg33.5, its fragments, and these two synthetic peptides P4 and P8. Further studies on receptor-ligand interaction might lead to the development of the therapeutic reagent.  相似文献   

8.

Background

Plasmodium vivax is the most geographically widespread human malaria parasite. Cohort studies in Papua New Guinea have identified a rapid onset of immunity against vivax-malaria in children living in highly endemic areas. Although numerous P. vivax merozoite antigens are targets of naturally acquired antibodies, the role of many of these antibodies in protective immunity is yet unknown.

Methodology/Principal Findings

In a cohort of children aged 1–3 years, antibodies to different regions of Merozoite Surface Protein 3α (PvMSP3α) and Merozoite Surface Protein 9 (PvMSP9) were measured and related to prospective risk of P. vivax malaria during 16 months of active follow-up. Overall, there was a low prevalence of antibodies to PvMSP3α and PvMSP9 proteins (9–65%). Antibodies to the PvMSP3α N-terminal, Block I and Block II regions increased significantly with age while antibodies to the PvMSP3α Block I and PvMSP9 N-terminal regions were positively associated with concurrent P. vivax infection. Independent of exposure (defined as the number of genetically distinct blood-stage infection acquired over time (molFOB)) and age, antibodies specific to both PvMSP3α Block II (adjusted incidence ratio (aIRR) = 0.59, p = 0.011) and PvMSP9 N-terminus (aIRR = 0.68, p = 0.035) were associated with protection against clinical P. vivax malaria. This protection was most pronounced against high-density infections. For PvMSP3α Block II, the effect was stronger with higher levels of antibodies.

Conclusions

These results indicate that PvMSP3α Block II and PvMSP9 N-terminus should be further investigated for their potential as P. vivax vaccine antigens. Controlling for molFOB assures that the observed associations are not confounded by individual differences in exposure.  相似文献   

9.
Synthetic peptide vaccines provide the advantages of safety, stability and low cost. The success of this approach is highly dependent on efficient epitope identification and synthetic strategies for efficacious delivery. In malaria, the Merozoite Surface Protein-9 of Plasmodium vivax (PvMSP9) has been considered a vaccine candidate based on the evidence that specific antibodies were able to inhibit merozoite invasion and recombinant proteins were highly immunogenic in mice and humans. However the identities of linear B-cell epitopes within PvMSP9 as targets of functional antibodies remain undefined. We used several publicly-available algorithms for in silico analyses and prediction of relevant B cell epitopes within PMSP9. We show that the tandem repeat sequence EAAPENAEPVHENA (PvMSP9E795-A808) present at the C-terminal region is a promising target for antibodies, given its high combined score to be a linear epitope and located in a putative intrinsically unstructured region of the native protein. To confirm the predictive value of the computational approach, plasma samples from 545 naturally exposed individuals were screened for IgG reactivity against the recombinant PvMSP9-RIRII729-972 and a synthetic peptide representing the predicted B cell epitope PvMSP9E795-A808. 316 individuals (58%) were responders to the full repetitive region PvMSP9-RIRII, of which 177 (56%) also presented total IgG reactivity against the synthetic peptide, confirming it validity as a B cell epitope. The reactivity indexes of anti-PvMSP9-RIRII and anti-PvMSP9E795-A808 antibodies were correlated. Interestingly, a potential role in the acquisition of protective immunity was associated with the linear epitope, since the IgG1 subclass against PvMSP9E795-A808 was the prevalent subclass and this directly correlated with time elapsed since the last malaria episode; however this was not observed in the antibody responses against the full PvMSP9-RIRII. In conclusion, our findings identified and experimentally confirmed the potential of PvMSP9E795-A808 as an immunogenic linear B cell epitope within the P. vivax malaria vaccine candidate PvMSP9 and support its inclusion in future subunit vaccines.  相似文献   

10.
BackgroundEstimation of malaria prevalence in very low transmission settings is difficult by even the most advanced diagnostic tests. Antibodies against malaria antigens provide an indicator of active or past exposure to these parasites. The prominent malaria species within Haiti is Plasmodium falciparum, but P. vivax and P. malariae infections are also known to be endemic.Methodology/Principal findingsFrom 2014–2016, 28,681 Haitian children were enrolled in school-based serosurveys and were asked to provide a blood sample for detection of antibodies against multiple infectious diseases. IgG against the P. falciparum, P. vivax, and P. malariae merozoite surface protein 19kD subunit (MSP119) antigens was detected by a multiplex bead assay (MBA). A subset of samples was also tested for Plasmodium DNA by PCR assays, and for Plasmodium antigens by a multiplex antigen detection assay. Geospatial clustering of high seroprevalence areas for P. vivax and P. malariae antigens was assessed by both Ripley’s K-function and Kulldorff’s spatial scan statistic. Of 21,719 children enrolled in 680 schools in Haiti who provided samples to assay for IgG against PmMSP119, 278 (1.27%) were seropositive. Of 24,559 children enrolled in 788 schools providing samples for PvMSP119 serology, 113 (0.46%) were seropositive. Two significant clusters of seropositivity were identified throughout the country for P. malariae exposure, and two identified for P. vivax. No samples were found to be positive for Plasmodium DNA or antigens.Conclusions/SignificanceFrom school-based surveys conducted from 2014 to 2016, very few Haitian children had evidence of exposure to P. vivax or P. malariae, with no children testing positive for active infection. Spatial scan statistics identified non-overlapping areas of the country with higher seroprevalence for these two malarias. Serological data provides useful information of exposure to very low endemic malaria species in a population that is unlikely to present to clinics with symptomatic infections.  相似文献   

11.

Background

A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion.

Methodology/Principal Findings

We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further suggesting that the proteins are natively folded and functional. This screen also identified two novel protein-protein interactions, between P12 and PVX_110945, and between MSP3.10 and MSP7.1, the latter of which was confirmed by surface plasmon resonance.

Conclusions/Significance

We produced a new library of recombinant full-length P. vivax ectodomains, established that the majority of them contain tertiary structure, and used them to identify predicted and novel protein-protein interactions. As well as identifying new interactions for further biological studies, this library will be useful in identifying P. vivax proteins with vaccine potential, and studying P. vivax malaria pathogenesis and immunity.

Trial Registration

ClinicalTrials.gov NCT00663546  相似文献   

12.
Understanding the transmission and movement of Plasmodium parasites is crucial for malaria elimination and prevention of resurgence. Located at the limit of malaria transmission in the Pacific, Vanuatu is an ideal candidate for elimination programs due to low endemicity and the isolated nature of its island setting. We analyzed the variation in the merozoite surface protein 1 (msp1) and the circumsporozoite protein (csp) of P. falciparum and P. vivax populations to examine the patterns of gene flow and population structures among seven sites on five islands in Vanuatu. Genetic diversity was in general higher in P. vivax than P. falciparum from the same site. In P. vivax, high genetic diversity was likely maintained by greater extent of gene flow among sites and among islands. Consistent with the different patterns of gene flow, the proportion of genetic variance found among islands was substantially higher in P. falciparum (28.81–31.23%) than in P. vivax (-0.53–3.99%). Our data suggest that the current island-by-island malaria elimination strategy in Vanuatu, while adequate for P. falciparum elimination, might need to be complemented with more centrally integrated measures to control P. vivax movement across islands.  相似文献   

13.
In Plasmodium, the membrane of intracellular parasites is initially formed during invasion as an invagination of the red blood cell surface, which forms a barrier between the parasite and infected red blood cells in asexual blood stage parasites. The membrane proteins of intracellular parasites of Plasmodium species have been identified such as early-transcribed membrane proteins (ETRAMPs) and exported proteins (EXPs). However, there is little or no information regarding the intracellular parasite membrane in Plasmodium vivax. In the present study, recombinant PvETRAMP11.2 (PVX_003565) and PvEXP1 (PVX_091700) were expressed and evaluated antigenicity tests using sera from P. vivax-infected patients. A large proportion of infected individuals presented with IgG antibody responses against PvETRAMP11.2 (76.8%) and PvEXP1 (69.6%). Both of the recombinant proteins elicited high antibody titers capable of recognizing parasites of vivax malaria patients. PvETRAMP11.2 partially co-localized with PvEXP1 on the intracellular membranes of immature schizont. Moreover, they were also detected at the apical organelles of newly formed merozoites of mature schizont. We first proposed that these proteins might be synthesized in the preceding schizont stage, localized on the parasite membranes and apical organelles of infected erythrocytes, and induced high IgG antibody responses in patients.  相似文献   

14.
Malaria, one of the world''s most common diseases, is caused by the intracellular protozoan parasite known as Plasmodium. In this study, we have determined the evolutionary relationship of two single-copy proteins, circumsporozoite protein (CSP) and merozoite surface protein-1 (MSP-1), among Plasmodium species using various bioinformatics tools and softwares. These two proteins are major blood stage antigens of Plasmodium species. This study demonstrates that the circumsporozoite protein of Plasmodium falciparum shows similarity with Plasmodium cynomolgi and Plasmodium knowlesi. The merozoite surface protein-1 of Plasmodium coatneyi forms a monophyletic group with Plasmodium knowlesi, demonstrating their close relationship and these two species also reveal similarity between the human malaria Plasmodium vivax. This Plasmodium phylogenetic arrangement is evidently crucial to identify shared derived characters as well as particular adaptation of plasmodium species from inside and between monophyletic groups.  相似文献   

15.

Background

The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.

Methods

Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.

Results

Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.

Conclusions

Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.  相似文献   

16.
Plasmodium simium is a parasite from New World monkeys that is most closely related to the human malaria parasite Plasmodium vivax; it also naturally infects humans. The blood-stage infection of P. vivax depends on Duffy binding protein II (PvDBPII) and its cognate receptor on erythrocytes, the Duffy antigen receptor for chemokines (hDARC), but there is no information on the P. simium erythrocytic invasion pathway. The genes encoding P. simium DBP (PsDBPII) and simian DARC (sDARC) were sequenced from Southern brown howler monkeys (Alouatta guariba clamitans) naturally infected with P. simium because P. simium may also depend on the DBPII/DARC interaction. The sequences of DBP binding domains from P. vivax and P. simium were highly similar. However, the genetic variability of PsDBPII was lower than that of PvDBPII. Phylogenetic analyses demonstrated that these genes were strictly related and clustered in the same clade of the evolutionary tree. DARC from A. clamitans was also sequenced and contained three new non-synonymous substitutions. None of these substitutions were located in the N-terminal domain of DARC, which interacts directly with DBPII. The interaction between sDARC and PvDBPII was evaluated using a cytoadherence assay of COS7 cells expressing PvDBPII on their surfaces. Inhibitory binding assays in vitro demonstrated that antibodies from monkey sera blocked the interaction between COS-7 cells expressing PvDBPII and hDARC-positive erythrocytes. Taken together, phylogenetic analyses reinforced the hypothesis that the host switch from humans to monkeys may have occurred very recently in evolution, which sheds light on the evolutionary history of new world plasmodia. Further invasion studies would confirm whether P. simium depends on DBP/DARC to trigger internalization into red blood cells.  相似文献   

17.
BackgroundMalaria in Brazil represents one of the highest percentages of Latin America cases, where approximately 84% of infections are attributed to Plasmodium (P.) vivax. Despite the high incidence, many aspects of gestational malaria resulting from P. vivax infections remain poorly studied. As such, we aimed to evaluate the consequences of P. vivax infections during gestation on the health of mothers and their neonates in an endemic area of the Amazon.Methods and findingsWe have conducted an observational cohort study in Brazilian Amazon between January 2013 and April 2015. 600 pregnant women were enrolled and followed until delivery. After applying exclusion criteria, 329 mother-child pairs were included in the analysis. Clinical data regarding maternal infection, newborn’s anthropometric measures, placental histopathological characteristics, and angiogenic and inflammatory factors were evaluated. The presence of plasma IgG against the P. vivax (Pv) MSP119 protein was used as marker of exposure and possible associations with pregnancy outcomes were analyzed. Multivariate logistic regression analysis revealed that P. vivax infections during the first trimester of pregnancy are associated with adverse gestational outcomes such as premature birth (adjusted odds ratio [aOR] 8.12, 95% confidence interval [95%CI] 2.69–24.54, p < 0.0001) and reduced head circumference (aOR 3.58, 95%CI 1.29–9.97, p = 0.01). Histopathology analysis showed marked differences between placentas from P. vivax-infected and non-infected pregnant women, especially regarding placental monocytes infiltrate. Placental levels of vasomodulatory factors such as angiopoietin-2 (ANG-2) and complement proteins such as C5a were also altered at delivery. Plasma levels of anti-PvMSP119 IgG in infected pregnant women were shown to be a reliable exposure marker; yet, with no association with improved pregnancy outcomes.ConclusionsThis study indicates that P. vivax malaria during the first trimester of pregnancy represents a higher likelihood of subsequent poor pregnancy outcomes associated with marked placental histologic modification and angiogenic/inflammatory imbalance. Additionally, our findings support the idea that antibodies against PvMSP119 are not protective against poor pregnancy outcomes induced by P. vivax infections.  相似文献   

18.
Transmission of malaria parasites from humans to Anopheles mosquitoes can be inhibited by specific antibodies elicited during malaria infection, which target surface Plasmodium gametocyte/gamete proteins. Some of these proteins may have potential for vaccine development. Pvs48/45 is a P. vivax gametocyte surface antigen orthologous to Pfs48/45, which may play a role during parasite fertilization and thus has potential for transmission blocking (TB) activity. Here we describe the expression of a recombinant Pvs48/45 protein expressed in Escherichia coli as a ∼60kDa construct which we tested for antigenicity using human sera and for its immunogenicity and transmission blocking activity of specific anti-mouse and anti-monkey Pvs48/45 antibodies. The protein reacted with sera of individuals from malaria-endemic areas and in addition induced specific IgG antibody responses in BALB/c mice and Aotus l. griseimembra monkeys. Sera from both immunized animal species recognized native P. vivax protein in Western blot (WB) and immunofluorescence assays. Moreover, sera from immunized mice and monkeys produced significant inhibition of parasite transmission to An. Albimanus mosquitoes as shown by membrane feeding assays. Results indicate the presence of reactive epitopes in the Pvs48/45 recombinant product that induce antibodies with TB activity. Further testing of this protein is ongoing to determine its vaccine potential.  相似文献   

19.
Although progress in the development of an antimalarial vaccine has been mostly obtained through the study of P. falciparum, significant advances have recently been made in the study of P. vivax, the other major human malarial parasite. Antigens which have been shown to be important in P. falciparum have been characterized and in some cases cloned in P. vivax. Other studies have examined some of the more specific biological characteristics of P. vivax. Among these are studies on components present in caveolae-vesicle complexes of the infected erythrocyte, on the occurrence of delayed hepatic development leading to relapse, or on the Duffy erythrocyte antigen as a key receptor for parasite invasion. Although progress has been made in the short-term in vitro maintenance of P. vivax, the inability to maintain the parasite in continuous culture led to the investigation of wild parasite populations in patients; occurrence of extensive antigenic and karyotype polymorphism was detected in this way, as was a double-blocking and enhancing activity of human antibodies on parasite development in the vector. The association of monoclonal antibodies with DNA recombinant technology allowed the characterization of a number of P. vivax antigens to be made. Among these, an antigen shared between sexual and asexual stages was shown to constitute a target for transmission-blocking immunity. The cloning of an antigen involved in transmission-blocking immunity, along with that of the surface antigen of the sporozite (CSP) and of a major surface antigen of the invasive merozoite (PV200) constitutes a significant step towards the development of a multivalent recombinant vaccine against P. vivax.  相似文献   

20.
Anti-glycosylphosphatidylinositol (GPI) antibodies (Abs) may reflect and mediate, at least partially, anti-disease immunity in malaria by neutralising the toxic effect of parasitic GPI. Thus, we assessed the anti-GPI Ab response in asymptomatic individuals living in an area of the Brazilian Amazon that has a high level of malaria transmission. For comparative purposes, we also investigated the Ab response to a crude extract prepared from Plasmodium falciparum, the merozoite surface protein (MSP)3 antigen of P. falciparum and the MSP 1 antigen of Plasmodium vivax (PvMSP1-19) in these individuals and in Angolan patients with acute malaria. Our data suggest that the Ab response against P. falciparum GPI is not associated with P. falciparum asymptomatic infection in individuals who have been chronically exposed to malaria in the Brazilian Amazon. However, this Ab response could be related to ongoing parasitaemia (as was previously shown) in the Angolan patients. In addition, our data show that PvMSP1-19may be a good marker antigen to reflect previous exposure to Plasmodium in areas that have a high transmission rate of P. vivax.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号