首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In yeast cells infected with the [PSI+] prion, Sup35p forms aggregates and its activity in translation termination is downregulated. Transfection experiments have shown that Sup35p filaments assembled in vitro are infectious, suggesting that they reproduce or closely resemble the prion. We have used several EM techniques to study the molecular architecture of filaments, seeking clues as to the mechanism of downregulation. Sup35p has an N-terminal 'prion' domain; a highly charged middle (M-)domain; and a C-terminal domain with the translation termination activity. By negative staining, cryo-EM and scanning transmission EM (STEM), filaments of full-length Sup35p show a thin backbone fibril surrounded by a diffuse 65-nm-wide cloud of globular C-domains. In diameter (~8 nm) and appearance, the backbones resemble amyloid fibrils of N-domains alone. STEM mass-per-unit-length data yield ~1 subunit per 0.47 nm for N-fibrils, NM-filaments and Sup35p filaments, further supporting the fibril backbone model. The 30 nm radial span of decorating C-domains indicates that the M-domains assume highly extended conformations, offering an explanation for the residual Sup35p activity in infected cells, whereby the C-domains remain free enough to interact with ribosomes.  相似文献   

4.
5.
6.
7.
8.
Protein conformational maladies such as Huntington Disease are characterized by accumulation of intracellular and extracellular protein inclusions containing amyloid-like proteins. There is an inverse correlation between proteotoxicity and aggregation, so facilitated protein aggregation appears cytoprotective. To define mechanisms for protective protein aggregation, a screen for suppressors of nuclear huntingtin (Htt103Q) toxicity was conducted. Nuclear Htt103Q is highly toxic and less aggregation prone than its cytosolic form, so we identified suppressors of cytotoxicity caused by Htt103Q tagged with a nuclear localization signal (NLS). High copy suppressors of Htt103Q-NLS toxicity include the polyQ-domain containing proteins Nab3, Pop2, and Cbk1, and each suppresses Htt toxicity via a different mechanism. Htt103Q-NLS appears to inactivate the essential functions of Nab3 in RNA processing in the nucleus. Function of Pop2 and Cbk1 is not impaired by nuclear Htt103Q, as their respective polyQ-rich domains are sufficient to suppress Htt103Q toxicity. Pop2 is a subunit of an RNA processing complex and is localized throughout the cytoplasm. Expression of just the Pop2 polyQ domain and an adjacent proline-rich stretch is sufficient to suppress Htt103Q toxicity. The proline-rich domain in Pop2 resembles an aggresome targeting signal, so Pop2 may act in trans to positively impact spatial quality control of Htt103Q. Cbk1 accumulates in discrete perinuclear foci and overexpression of the Cbk1 polyQ domain concentrates diffuse Htt103Q into these foci, which correlates with suppression of Htt toxicity. Protective action of Pop2 and Cbk1 in spatial quality control is dependent upon the Hsp70 co-chaperone Sti1, which packages amyloid-like proteins into benign foci. Protein:protein interactions between Htt103Q and its intracellular neighbors lead to toxic and protective outcomes. A subset of polyQ-rich proteins buffer amyloid toxicity by funneling toxic aggregation intermediates to the Hsp70/Sti1 system for spatial organization into benign species.  相似文献   

9.
10.
11.
Nuclear abundant poly(A) RNA-binding protein 2 (Nab2) is an essential yeast heterogeneous nuclear ribonucleoprotein that modulates both mRNA nuclear export and poly(A) tail length. The N-terminal domain of Nab2 (residues 1-97) mediates interactions with both the C-terminal globular domain of the nuclear pore-associated protein, myosin-like protein 1 (Mlp1), and the mRNA export factor, Gfd1. The solution and crystal structures of the Nab2 N-terminal domain show a primarily helical fold that is analogous to the PWI fold found in several other RNA-binding proteins. In contrast to other PWI-containing proteins, we find no evidence that the Nab2 N-terminal domain binds to nucleic acids. Instead, this domain appears to mediate protein:protein interactions that facilitate the nuclear export of mRNA. The Nab2 N-terminal domain has a distinctive hydrophobic patch centered on Phe73, consistent with this region of the surface being a protein:protein interaction site. Engineered mutations within this hydrophobic patch attenuate the interaction with the Mlp1 C-terminal domain but do not alter the interaction with Gfd1, indicating that this patch forms a crucial component of the interface between Nab2 and Mlp1.  相似文献   

12.
13.
We have investigated the role of different domains of a salivary basic proline-rich protein in intracellular transport and sorting of proline-rich proteins to the secretory granules. We have cloned a full-length cDNA of a basic proline-rich protein from the rat parotid and expressed it in AtT-20 cells. It was correctly sorted into secretory granules as shown by EM immunolocalization and by its presence in 8-bromocyclic AMP-stimulated secretion. Deletion of the N-terminal thirteen amino acid domain upstream from the proline-rich domain eliminated storage whereas deletion of the C-terminal 20-amino acid domain downstream from the proline-rich domain had no effect. Intracellular transport of full-length and mutant proline-rich proteins was unusually slow due to slow exit from the endoplasmic reticulum. However, the rate of transport increased with increasing level of expression for the full-length protein and the C-terminal deletion mutant. In contrast, the rate of transport of the N-terminal deletion mutant was independent of the level of expression. These results imply that the N-terminal domain is necessary for both storage and efficient intracellular transport. Moreover, interactions (self-aggregation?) that mediate sorting may begin as early as the endoplasmic reticulum.  相似文献   

14.
Glc7, the yeast protein phosphatase 1, is a component of the cleavage and polyadenylation factor (CPF). Here we show that downregulation of Glc7, or its dissociation from CPF in the absence of CPF subunits Ref2 or Swd2, results in similar snoRNA termination defects. Overexpressing a C-terminal fragment of Sen1, a superfamily I helicase required for snoRNA termination, suppresses the growth and termination defects associated with loss of Swd2 or Ref2, but not Glc7. Suppression by Sen1 requires nuclear localization and direct interaction with Glc7, which can dephosphorylate Sen1 in vitro. The suppressing fragment, and in a similar manner full-length Sen1, copurifies with the snoRNA termination factors Nrd1 and Nab3, suggesting loss of Glc7 from CPF can be compensated by recruiting Glc7 to Nrd1-Nab3 through Sen1. Swd2 is also a subunit of the Set1c histone H3K4 methyltransferase complex and is required for its stability and optimal methyltransferase activity.  相似文献   

15.
16.
The [URE3] yeast prion is a self-propagating inactive form of the Ure2 protein. Ure2p is composed of two domains, residues 1-93, the prion-forming domain, and the remaining C-terminal part of the protein, which forms the functional domain involved in nitrogen catabolite repression. In vitro, Ure2p forms amyloid filaments that have been proposed to be the aggregated prion form found in vivo. Here we showed that the biochemical characteristics of these two species differ. Protease digestions of Ure2p filaments and soluble Ure2p are comparable when analyzed by Coomassie staining as by Western blot. However, this finding does not explain the pattern specifically observed in [URE3] strains. Antibodies raised against the C-terminal part of Ure2p revealed the existence of proteolysis sites efficiently cleaved when [URE3], but not wild-type crude extracts, were submitted to limited proteolysis. The same antibodies lead to an equivalent digestion pattern when recombinant Ure2p (either soluble or amyloid) was analyzed in the same way. These results strongly suggest that aggregated Ure2p in [URE3] yeast cells is different from the amyloid filaments generated in vitro.  相似文献   

17.
18.
The eukaryotic translation initiation factor (eIF) 4B promotes the RNA-dependent ATP hydrolysis activity and ATP-dependent RNA helicase activity of eIF4A and eIF4F during translation initiation. Although this function is conserved among plants, animals, and yeast, eIF4B is one of the least conserved of initiation factors at the sequence level. To gain insight into its functional conservation, the organization of the functional domains of eIF4B from wheat has been investigated. Plant eIF4B contains three RNA binding domains, one more than reported for mammalian or yeast eIF4B, and each domain exhibits a preference for purine-rich RNA. In addition to a conserved RNA recognition motif and a C-terminal RNA binding domain, wheat eIF4B contains a novel N-terminal RNA binding domain that requires a short, lysine-rich containing sequence. Both the lysine-rich motif and an adjacent, C-proximal motif are conserved with an N-proximal sequence in human and yeast eIF4B. The C-proximal motif within the N-terminal RNA binding domain in wheat eIF4B is required for interaction with eIFiso4G, an interaction not reported for other eIF4B proteins. Moreover, each RNA binding domain requires dimerization for binding activity. Two binding sites for the poly(A)-binding protein were mapped to a region within each of two conserved 41-amino acid repeat domains on either side of the C-terminal RNA binding domain. eIF4A bound to an adjacent region within each repeat, supporting a central role for these conserved eIF4B domains in facilitating interaction with other components of the translational machinery. These results support the notion that eIF4B functions by organizing multiple components of the translation initiation machinery and RNA.  相似文献   

19.
Nuclear export of mRNA requires several key mRNA-binding proteins that recognize and remodel the mRNA and target it for export via interactions with the nuclear pore complex. In Saccharomyces cerevisiae, the shuttling heterogeneous nuclear ribonucleoprotein, Nab2, which is essential for mRNA export, specifically recognizes poly(A) RNA and binds to the nuclear pore-associated protein, myosin-like protein 1 (Mlp1), which functions in mRNA export and quality control. Specifically, the N-terminal domain of Nab2 (Nab2-N; residues 1-97) interacts directly with the C-terminal globular domain of Mlp1 (CT-Mlp1: residues 1490-1875). Recent structural and binding studies focused on Nab2-N have shown that Nab2-N contains a hydrophobic patch centered on Phe(73) that is critical for interaction with Mlp1. Engineered amino acid changes within this patch disrupt the Nab2/Mlp1 interaction in vitro. Given the importance of Nab2 and Mlp1 to mRNA export, we have examined the Nab2/Mlp1 interaction in greater detail and analyzed the functional consequences of disrupting the interaction in vivo. We find that the Nab2-binding domain of Mlp1 (Mlp1-NBD) maps to a 183-residue region (residues 1586-1768) within CT-Mlp1, binds directly to Nab2 with micromolar affinity, and confers nuclear accumulation of poly(A) RNA. Furthermore, we show that cells expressing a Nab2 F73D mutant that cannot interact with Mlp1 exhibit nuclear accumulation of poly(A) RNA and that this nab2 F73D mutant genetically interacts with alleles of two essential mRNA export genes, MEX67 and YRA1. These data provide in vivo evidence for a model of mRNA export in which Nab2 is important for targeting mRNAs to the nuclear pore for export.  相似文献   

20.
Nuclear export of mRNA is mediated by interactions between soluble factors and nuclear pore complex (NPC) proteins. In Saccharomyces cerevisiae, Nab2 is an essential RNA-binding protein that shuttles between the nucleus and cytoplasm. The mechanism for trafficking of Nab2-bound mRNA through the NPC has not been defined. Gle1 is also required for mRNA export, and Gle1 interactions with NPC proteins, the RNA helicase Dbp5, and Gfd1 have been reported. Here we report that Nab2, Gfd1, and Gle1 associate in a complex. By using immobilized recombinant Gfd1, Nab2 was isolated from total yeast lysate. A similar biochemical assay with immobilized recombinant Nab2 resulted in coisolation of Gfd1 and Gle1. A Nab2-Gfd1 complex was also identified by coimmunoprecipitation from yeast lysates. In vitro binding assays with recombinant proteins revealed a direct association between Nab2 and Gfd1, and two-hybrid assays delineated Gfd1 binding to the N-terminal Nab2 domain. This N-terminal Nab2 domain is distinct from its RNA binding domains suggesting Nab2 could bind Gfd1 and RNA simultaneously. As Nab2 export was blocked in a gle1 mutant at the restrictive temperature, we propose a model wherein Gfd1 serves as a bridging factor between Gle1 and Nab2-bound mRNA during export.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号