首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured potential rates of bacterial dissimilatory reduction of 75SeO42− to 75Se0 in a diversity of sediment types, with salinities ranging from freshwater (salinity = 1 g/liter) to hypersaline (salinity = 320 g/liter and with pH values ranging from 7.1 to 9.8. Significant biological selenate reduction occurred in all samples with salinities from 1 to 250 g/liter but not in samples with a salinity of 320 g/liter. Potential selenate reduction rates (25 nmol of SeO42− per ml of sediment added with isotope) ranged from 0.07 to 22 μmol of SeO42− reduced liter−1 h−1. Activity followed Michaelis-Menten kinetics in relation to SeO42− concentration (Km of selenate = 7.9 to 720 μM). There was no linear correlation between potential rates of SeO42− reduction and salinity, pH, concentrations of total Se, porosity, or organic carbon in the sediments. However, potential selenate reduction was correlated with apparent Km for selenate and with potential rates of denitrification (r = 0.92 and 0.81, respectively). NO3, NO2, MoO42−, and WO42− inhibited selenate reduction activity to different extents in sediments from both Hunter Drain and Massie Slough, Nev. Sulfate partially inhibited activity in sediment from freshwater (salinity = 1 g/liter) Massie Slough samples but not from the saline (salinity = 60 g/liter) Hunter Drain samples. We conclude that dissimilatory selenate reduction in sediments is widespread in nature. In addition, in situ selenate reduction is a first-order reaction, because the ambient concentrations of selenium oxyanions in the sediments were orders of magnitude less than their Kms.  相似文献   

2.
We report pyruvate formation in Escherichia coli strain ALS929 containing mutations in the aceEF, pfl, poxB, pps, and ldhA genes which encode, respectively, the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, phosphoenolpyruvate synthase, and lactate dehydrogenase. The glycolytic rate and pyruvate productivity were compared using glucose-, acetate-, nitrogen-, or phosphorus-limited chemostats at a growth rate of 0.15 h−1. Of these four nutrient limitation conditions, growth under acetate limitation resulted in the highest glycolytic flux (1.60 g/g · h), pyruvate formation rate (1.11 g/g · h), and pyruvate yield (0.70 g/g). Additional mutations in atpFH and arcA (strain ALS1059) further elevated the steady-state glycolytic flux to 2.38 g/g · h in an acetate-limited chemostat, with heterologous NADH oxidase expression causing only modest additional improvement. A fed-batch process with strain ALS1059 using defined medium with 5 mM betaine as osmoprotectant and an exponential feeding rate of 0.15 h−1 achieved 90 g/liter pyruvate, with an overall productivity of 2.1 g/liter · h and yield of 0.68 g/g.  相似文献   

3.
Bacterial community composition was monitored in four shallow eutrophic lakes during one year using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified prokaryotic rDNA genes. Of the four lakes investigated, two were of the clearwater type and had dense stands of submerged macrophytes while two others were of the turbid type characterized by the occurrence of phytoplankton blooms. One turbid and one clearwater lake had high nutrient levels (total phosphorus, >100 μg liter−1) while the other lakes had relatively low nutrient levels (total phosphorus, <100 μg liter−1). For each lake, seasonal changes in the bacterial community were related to bottom-up (resources) and top-down (grazers) variables by using canonical correspondence analysis (CCA). Using an artificial model dataset to which potential sources of error associated with the use of relative band intensities in DGGE analysis were added, we found that preferential amplification of certain rDNA genes over others does not obscure the relationship between bacterial community composition and explanatory variables. Besides, using this artificial dataset as well as our own data, we found a better correlation between bacterial community composition and explanatory variables by using relative band intensities compared to using presence/absence data. While bacterial community composition was related to phytoplankton biomass in the high-nutrient lakes no such relation was found in the low-nutrient lakes, where the bacterial community is probably dependent on other organic matter sources. We used variation partitioning to evaluate top-down regulation of bacterial community composition after bottom-up regulation has been accounted for. Using this approach, we found no evidence for top-down regulation of bacterial community composition in the turbid lakes, while grazing by ciliates and daphnids (Daphnia and Ceriodaphnia) was significantly related to changes in the bacterial community in the clearwater lakes. Our results suggest that in eutrophic shallow lakes, seasonality of bacterial community structure is dependent on the dominant substrate source as well as on the food web structure.  相似文献   

4.
A radioisotope method was devised to study bacterial respiratory reduction of arsenate in sediments. The following two arsenic-rich soda lakes in California were chosen for comparison on the basis of their different salinities: Mono Lake (~90 g/liter) and Searles Lake (~340 g/liter). Profiles of arsenate reduction and sulfate reduction were constructed for both lakes. Reduction of [73As]arsenate occurred at all depth intervals in the cores from Mono Lake (rate constant [k] = 0.103 to 0.04 h−1) and Searles Lake (k = 0.012 to 0.002 h−1), and the highest activities occurred in the top sections of each core. In contrast, [35S]sulfate reduction was measurable in Mono Lake (k = 7.6 ×104 to 3.2 × 10−6 h−1) but not in Searles Lake. Sediment DNA was extracted, PCR amplified, and separated by denaturing gradient gel electrophoresis (DGGE) to obtain phylogenetic markers (i.e., 16S rRNA genes) and a partial functional gene for dissimilatory arsenate reduction (arrA). The amplified arrA gene product showed a similar trend in both lakes; the signal was strongest in surface sediments and decreased to undetectable levels deeper in the sediments. More arrA gene signal was observed in Mono Lake and was detectable at a greater depth, despite the higher arsenate reduction activity observed in Searles Lake. A partial sequence (about 900 bp) was obtained for a clone (SLAS-3) that matched the dominant DGGE band found in deeper parts of the Searles Lake sample (below 3 cm), and this clone was found to be closely related to SLAS-1, a novel extremophilic arsenate respirer previously cultivated from Searles Lake.  相似文献   

5.
Seasonal variation in the phylogenetic composition of Synechococcus assemblages in estuarine and coastal waters of Hong Kong was examined through pyrosequencing of the rpoC1 gene. Sixteen samples were collected in 2009 from two stations representing estuarine and ocean-influenced coastal waters, respectively. Synechococcus abundance in coastal waters gradually increased from 3.6 × 103 cells ml−1 in March, reaching a peak value of 5.7 × 105 cells ml−1 in July, and then gradually decreased to 9.3 × 103 cells ml−1 in December. The changes in Synechococcus abundance in estuarine waters followed a pattern similar to that in coastal waters, whereas its composition shifted from being dominated by phycoerythrin-rich (PE-type) strains in winter to phycocyanin-only (PC-type) strains in summer owing to the increase in freshwater discharge from the Pearl River and higher water temperature. The high abundance of PC-type Synechococcus was composed of subcluster 5.2 marine Synechococcus, freshwater Synechococcus (F-PC), and Cyanobium. The Synechococcus assemblage in the coastal waters, on the other hand, was dominated by marine PE-type Synechococcus, with subcluster 5.1 clades II and VI as the major lineages from April to September, when the summer monsoon prevailed. Besides these two clades, clade III cooccurred with clade V at relatively high abundance in summer. During winter, the Synechococcus assemblage compositions at the two sites were similar and were dominated by subcluster 5.1 clades II and IX and an undescribed clade (represented by Synechococcus sp. strain miyav). Clade IX Synechococcus was a relatively ubiquitous PE-type Synechococcus found at both sites, and our study demonstrates that some strains of the clade have the ability to deal with large variation of salinity in subtropical estuarine environments. Our study suggests that changes in seawater temperature and salinity caused by the seasonal variation of monsoonal forcing are two major determinants of the community composition and abundance of Synechococcus assemblages in Hong Kong waters.  相似文献   

6.
Soda lakes are naturally occurring highly alkaline and saline environments. Although the sulfur cycle is one of the most active element cycles in these lakes, little is known about the sulfate-reducing bacteria (SRB). In this study we investigated the diversity, activity, and abundance of SRB in sediment samples and enrichment cultures from a range of (hyper)saline soda lakes of the Kulunda Steppe in southeastern Siberia in Russia. For this purpose, a polyphasic approach was used, including denaturing gradient gel electrophoresis of dsr gene fragments, sulfate reduction rate measurements, serial dilutions, and quantitative real-time PCR (qPCR). Comparative sequence analysis revealed the presence of several novel clusters of SRB, mostly affiliated with members of the order Desulfovibrionales and family Desulfobacteraceae. We detected sulfate reducers and observed substantial sulfate reducing rates (between 12 and 423 μmol/dm3 day−1) for most lakes, even at a salinity of 475 g/liter. Enrichments were obtained at salt saturating conditions (4 M Na+), using H2 or volatile fatty acids as electron donors, and an extremely halophilic SRB, strain ASO3-1, was isolated. Furthermore, a high dsr gene copy number of 108 cells per ml was detected in a hypersaline lake by qPCR. Our results indicate the presence of diverse and active SRB communities in these extreme ecosystems.  相似文献   

7.
For ethanol production from lignocellulose, the fermentation of xylose is an economic necessity. Saccharomyces cerevisiae has been metabolically engineered with a xylose-utilizing pathway. However, the high ethanol yield and productivity seen with glucose have not yet been achieved. To quantitatively analyze metabolic fluxes in recombinant S. cerevisiae during metabolism of xylose-glucose mixtures, we constructed a stable xylose-utilizing recombinant strain, TMB 3001. The XYL1 and XYL2 genes from Pichia stipitis, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, and the endogenous XKS1 gene, encoding xylulokinase (XK), under control of the PGK1 promoter were integrated into the chromosomal HIS3 locus of S. cerevisiae CEN.PK 113-7A. The strain expressed XR, XDH, and XK activities of 0.4 to 0.5, 2.7 to 3.4, and 1.5 to 1.7 U/mg, respectively, and was stable for more than 40 generations in continuous fermentations. Anaerobic ethanol formation from xylose by recombinant S. cerevisiae was demonstrated for the first time. However, the strain grew on xylose only in the presence of oxygen. Ethanol yields of 0.45 to 0.50 mmol of C/mmol of C (0.35 to 0.38 g/g) and productivities of 9.7 to 13.2 mmol of C h−1 g (dry weight) of cells−1 (0.24 to 0.30 g h−1 g [dry weight] of cells−1) were obtained from xylose-glucose mixtures in anaerobic chemostat cultures, with a dilution rate of 0.06 h−1. The anaerobic ethanol yield on xylose was estimated at 0.27 mol of C/(mol of C of xylose) (0.21 g/g), assuming a constant ethanol yield on glucose. The xylose uptake rate increased with increasing xylose concentration in the feed, from 3.3 mmol of C h−1 g (dry weight) of cells−1 when the xylose-to-glucose ratio in the feed was 1:3 to 6.8 mmol of C h−1 g (dry weight) of cells−1 when the feed ratio was 3:1. With a feed content of 15 g of xylose/liter and 5 g of glucose/liter, the xylose flux was 2.2 times lower than the glucose flux, indicating that transport limits the xylose flux.  相似文献   

8.
Little is known about the abundance, distribution, and ecology of aerobic anoxygenic phototrophic (AAP) bacteria, particularly in oligotrophic environments, which represent 60% of the ocean. We investigated the abundance of AAP bacteria across the South Pacific Ocean, including the center of the gyre, the most oligotrophic water body of the world ocean. AAP bacteria, Prochlorococcus, and total prokaryotic abundances, as well as bacteriochlorophyll a (BChl a) and divinyl-chlorophyll a concentrations, were measured at several depths in the photic zone along a gradient of oligotrophic conditions. The abundances of AAP bacteria and Prochlorococcus were high, together accounting for up to 58% of the total prokaryotic community. The abundance of AAP bacteria alone was up to 1.94 × 105 cells ml−1 and as high as 24% of the overall community. These measurements were consistent with the high BChl a concentrations (up to 3.32 × 10−3 μg liter−1) found at all stations. However, the BChl a content per AAP bacterial cell was low, suggesting that AAP bacteria are mostly heterotrophic organisms. Interestingly, the biovolume and therefore biomass of AAP bacteria was on average twofold higher than that of other prokaryotic cells. This study demonstrates that AAP bacteria can be abundant in various oligotrophic conditions, including the most oligotrophic regime of the world ocean, and can account for a large part of the bacterioplanktonic carbon stock.  相似文献   

9.
The effect of inulin sugars concentration on the growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 was studied. A maximum ethanol concentration of 102 g/liter was obtained from 250 g of sugars per liter initial concentration. The maximum specific growth rate varied from 0.44 h−1 at 50 g of sugar per liter to 0.13 h−1 at 300 g of sugar per liter, whereas the ethanol yield remained almost constant at 0.45 g of ethanol per g of sugars utilized.  相似文献   

10.
Seafloor basalts are widely distributed and host diverse prokaryotic communities, but no data exist concerning the metabolic rates of the resident microbial communities. We present here potential extracellular enzyme activities of leucine aminopeptidase (LAP) and alkaline phosphatase (AP) measured on basalt samples from different locations on Loihi Seamount, HI, coupled with analysis of prokaryotic biomass and pyrosequencing of the bacterial 16S rRNA gene. The community maximum potential enzyme activity (Vmax) of LAP ranged from 0.47 to 0.90 nmol (g rock)−1 h−1; the Vmax for AP was 28 to 60 nmol (g rock)−1 h−1. The Km of LAP ranged from 26 to 33 μM, while the Km for AP was 2 to 7 μM. Bacterial communities on Loihi basalts were comprised primarily of Alpha-, Delta-, andGammaproteobacteria, Bacteroidetes, and Planctomycetes. The putative ability to produce LAP is evenly distributed across the most commonly detected bacterial orders, but the ability to produce AP is likely dominated by bacteria in the orders Xanthomonadales, Flavobacteriales, and Planctomycetales. The enzyme activities on Loihi basalts were compared to those of other marine environments that have been studied and were found to be similar in magnitude to those from continental shelf sediments and orders of magnitude higher than any measured in the water column, demonstrating that the potential for exposed basalts to transform organic matter is substantial. We propose that microbial communities on basaltic rock play a significant, quantifiable role in benthic biogeochemical processes.  相似文献   

11.
Located in southwest China, the Aha watershed is continually contaminated by acid mine drainage (AMD) produced from upstream abandoned coal mines. The watershed is fed by creeks with elevated concentrations of aqueous Fe (total Fe > 1 g/liter) and SO42− (>6 g/liter). AMD contamination gradually decreases throughout downstream rivers and reservoirs, creating an AMD pollution gradient which has led to a suite of biogeochemical processes along the watershed. In this study, sediment samples were collected along the AMD pollution sites for geochemical and microbial community analyses. High-throughput sequencing found various bacteria associated with microbial Fe and S cycling within the watershed and AMD-impacted creek. A large proportion of Fe- and S-metabolizing bacteria were detected in this watershed. The dominant Fe- and S-metabolizing bacteria were identified as microorganisms belonging to the genera Metallibacterium, Aciditerrimonas, Halomonas, Shewanella, Ferrovum, Alicyclobacillus, and Syntrophobacter. Among them, Halomonas, Aciditerrimonas, Metallibacterium, and Shewanella have previously only rarely been detected in AMD-contaminated environments. In addition, the microbial community structures changed along the watershed with different magnitudes of AMD pollution. Moreover, the canonical correspondence analysis suggested that temperature, pH, total Fe, sulfate, and redox potentials (Eh) were significant factors that structured the microbial community compositions along the Aha watershed.  相似文献   

12.
Legionnaires'' disease is a severe form of pneumonia caused by Legionella spp., organisms often isolated from environmental sources, including soil and water. Legionella spp. are capable of replicating intracellularly within free-living protozoa, and once this has occurred, Legionella is particularly resistant to disinfectants. Citrus essential oil (EO) vapors are effective antimicrobials against a range of microorganisms, with reductions of 5 log cells ml−1 on a variety of surfaces. The aim of this investigation was to assess the efficacy of a citrus EO vapor against Legionella spp. in water and in soil systems. Reductions of viable cells of Legionella pneumophila, Legionella longbeachae, Legionella bozemanii, and an intra-amoebal culture of Legionella pneumophila (water system only) were assessed in soil and in water after exposure to a citrus EO vapor at concentrations ranging from 3.75 mg/liter air to 15g/liter air. Antimicrobial efficacy via different delivery systems (passive and active sintering of the vapor) was determined in water, and gas chromatography-mass spectrometry (GC-MS) analysis of the antimicrobial components (linalool, citral, and β-pinene) was conducted. There was up to a 5-log cells ml−1 reduction in Legionella spp. in soil after exposure to the citrus EO vapors (15 mg/liter air). The most susceptible strain in water was L. pneumophila, with a 4-log cells ml−1 reduction after 24 h via sintering (15 g/liter air). Sintering the vapor through water increased the presence of the antimicrobial components, with a 61% increase of linalool. Therefore, the appropriate method of delivery of an antimicrobial citrus EO vapor may go some way in controlling Legionella spp. from environmental sources.  相似文献   

13.
Salinity effects on microbial community structure and on potential rates of arsenate reduction, arsenite oxidation, sulfate reduction, denitrification, and methanogenesis were examined in sediment slurries from two California soda lakes. We conducted experiments with Mono Lake and Searles Lake sediments over a wide range of salt concentrations (25 to 346 g liter−1). With the exception of sulfate reduction, rates of all processes demonstrated an inverse relationship to total salinity. However, each of these processes persisted at low but detectable rates at salt saturation. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes amplified from As(V) reduction slurries revealed that distinct microbial populations grew at low (25 to 50 g liter−1), intermediate (100 to 200 g liter−1), and high (>300 g liter−1) salinity. At intermediate and high salinities, a close relative of a cultivated As-respiring halophile was present. These results suggest that organisms adapted to more dilute conditions can remain viable at high salinity and rapidly repopulate the lake during periods of rising lake level. In contrast to As reduction, sulfate reduction in Mono Lake slurries was undetectable at salt saturation. Furthermore, sulfate reduction was excluded from Searles Lake sediments at any salinity despite the presence of abundant sulfate. Sulfate reduction occurred in Searles Lake sediment slurries only following inoculation with Mono Lake sediment, indicating the absence of sulfate-reducing flora. Experiments with borate-amended Mono Lake slurries suggest that the notably high (0.46 molal) concentration of borate in the Searles Lake brine was responsible for the exclusion of sulfate reducers from that ecosystem.  相似文献   

14.
We examined the diversity and community structure of members of the halophilic Archaea (class Halobacteria) in samples from central and southern Tunisian endorheic salt lakes and sebkhet (also known as sebkha) systems using targeted 16S rRNA gene diversity survey and quantitative PCR (qPCR) approaches. Twenty-three different samples from four distinct locations exhibiting a wide range of salinities (2% to 37%) and physical characteristics (water, salt crust, sediment, and biofilm) were examined. A total of 4,759 operational taxonomic units at the 0.03 (species-level) cutoff (OTU0.03s) belonging to 45 currently recognized genera were identified, with 8 to 43 genera (average, 30) identified per sample. In spite of the large number of genera detected per sample, only a limited number (i.e., 2 to 16) usually constituted the majority (≥80%) of encountered sequences. Halobacteria diversity showed a strong negative correlation to salinity (Pearson correlation coefficient = −0.92), and community structure analysis identified salinity, rather than the location or physical characteristics of the sample, as the most important factor shaping the Halobacteria community structure. The relative abundance of genera capable of biosynthesis of the compatible solute(s) trehalose or 2-sulfotrehalose decreased with increasing salinities (Pearson correlation coefficient = −0.80). Indeed, qPCR analysis demonstrated that the Halobacteria otsB (trehalose-6-phosphatase)/16S rRNA gene ratio decreases with increasing salinities (Pearson correlation coefficient = −0.87). The results highlight patterns and determinants of Halobacteria diversity at a previously unexplored ecosystem and indicate that genera lacking trehalose biosynthetic capabilities are more adapted to growth in and colonization of hypersaline (>25% salt) ecosystems than trehalose producers.  相似文献   

15.
Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 103 most probable number (MPN)/liter, 0.7 to 2.1 × 103 MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 104 MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons.  相似文献   

16.
Competition is a major driving force in freshwaters, especially given the cyclic nature and dynamics of pelagic food webs. Competition is especially important in the initial species assortment during colonization and re-colonization events, which depends strongly on the environmental context. Subtle changes, such as saline intrusion, may disrupt competitive relationships and, thus, influence community composition. Bearing this in mind, our objective was to assess whether low salinity levels (using NaCl as a proxy) alter the competitive outcome (measured as the rate of population biomass increase) of Daphnia-Simocephalus experimental microcosms, taking into account interactions with priority effects (sequential species arrival order). With this approach, we aimed to experimentally demonstrate a putative mechanism of differential species sorting in brackish environments or in freshwaters facing secondary salinization. Experiments considered three salinity levels, regarding NaCl added (0.00, 0.75 and 1.50 g L−1), crossed with three competition scenarios (no priority, priority of Daphnia over Simocephalus, and vice-versa). At lower NaCl concentrations (0.00 and 0.75 g L−1), Daphnia was a significantly superior competitor, irrespective of the species inoculation order, suggesting negligible priority effects. However, the strong decrease in Daphnia population growth at 1.50 g L−1 alleviated the competitive pressure on Simocephalus, causing an inversion of the competitive outcome in favour of Simocephalus. The intensity of this inversion depended on the competition scenario. This salinity-mediated disruption of the competitive outcome demonstrates that subtle environmental changes produce indirect effects in key ecological mechanisms, thus altering community composition, which may lead to serious implications in terms of ecosystem functioning (e.g. lake regime shifts due to reduced grazing) and biodiversity.  相似文献   

17.
The diversity of microorganisms active within sedimentary rocks provides important controls on the geochemistry of many subsurface environments. In particular, biodegradation of organic matter in sedimentary rocks contributes to the biogeochemical cycling of carbon and other elements and strongly impacts the recovery and quality of fossil fuel resources. In this study, archaeal diversity was investigated along a salinity gradient spanning 8 to 3,490 mM Cl in a subsurface shale rich in CH4 derived from biodegradation of sedimentary hydrocarbons. Shale pore waters collected from wells in the main CH4-producing zone lacked electron acceptors such as O2, NO3, Fe3+, or SO42−. Acetate was detected only in high-salinity waters, suggesting that acetoclastic methanogenesis is inhibited at Cl concentrations above ~1,000 mM. Most-probable-number series revealed differences in methanogen substrate utilization (acetate, trimethylamine, or H2/CO2) associated with chlorinity. The greatest methane production in enrichment cultures was observed for incubations with salinity at or close to the native pore water salinity of the inoculum. Restriction fragment length polymorphism analyses of archaeal 16S rRNA genes from seven wells indicated that there were links between archaeal communities and pore water salinity. Archaeal clone libraries constructed from sequences from 16S rRNA genes isolated from two wells revealed phylotypes similar to a halophilic methylotrophic Methanohalophilus species and a hydrogenotrophic Methanoplanus species at high salinity and a single phylotype closely related to Methanocorpusculum bavaricum at low salinity. These results show that several distinct communities of methanogens persist in this subsurface, CH4-producing environment and that each community is adapted to particular conditions of salinity and preferential substrate use and each community induces distinct geochemical signatures in shale formation waters.  相似文献   

18.
The type III secretion system (T3SS) is an important virulence factor of pathogenic bacteria, but the natural occurrence of variants of bacterial plant pathogens with deficiencies in their T3SS raises questions about the significance of the T3SS for fitness. Previous work on T3SS-deficient plant pathogenic bacteria has focused on strains from plants or plant debris. Here we have characterized T3SS-deficient strains of Pseudomonas syringae from plant and nonplant substrates in pristine nonagricultural contexts, many of which represent recently described clades not yet found associated with crop plants. Strains incapable of inducing a hypersensitive reaction (HR) in tobacco were detected in 65% of 126 samples from headwaters of rivers (mountain creeks and lakes), snowpack, epilithic biofilms, wild plants and leaf litter and constituted 2 to 100% of the P. syringae population associated with each sample. All HR strains lacked at least one gene in the canonical hrp/hrc locus or the associated conserved effector locus, but most lacked all six of the genes tested (hrcC, hrpL, hrpK1, avrE1 and hrpW1) and represented several disparate phylogenetic clades. Although most HR strains were incapable of causing symptoms on cantaloupe seedlings as expected, strains in the recently described TA-002 clade caused severe symptoms in spite of the absence of any of the six conserved genes of the canonical T3SS according to PCR and Southern blot assays. The phylogenetic context of the T3SS variants we observed provides insight into the evolutionary history of P. syringae as a pathogen and as an environmental saprophyte.  相似文献   

19.
Aerobic Fermentation of D-Xylose to Ethanol by Clavispora sp   总被引:1,自引:0,他引:1       下载免费PDF全文
Eleven strains of an undescribed species of Clavispora fermented D-xylose directly to ethanol under aerobic conditions. Strain UWO(PS)83-877-1 was grown in a medium containing 2% D-xylose and 0.5% yeast extract, and the following results were obtained: ethanol yield coefficient (ethanol/D-xylose), 0.29 g g−1 (57.4% of theoretical); cell yield coefficient (dry biomass/D-xylose), 0.25 g g−1; maximum ethanol concentration, 5.9 g liter−1; maximum volumetric ethanol productivity, 0.11 g liter−1 h−1. With initial D-xylose concentrations of 40, 60, and 80 g liter−1, maximum ethanol concentrations of 8.8, 10.9, and 9.8 g liter−1 were obtained, respectively (57.2, 57.1, and 48.3% of theoretical). Ethanol was found to inhibit the fermentation of D-xylose (Kp = 0.58 g liter−1) more than the fermentation of glucose (Kp = 6.5 g liter−1). The performance of this yeast compared favorably with that reported for some other D-xylose-fermenting yeasts.  相似文献   

20.
Rapid Methane Oxidation in a Landfill Cover Soil   总被引:28,自引:5,他引:28       下载免费PDF全文
Methane oxidation rates observed in a topsoil covering a retired landfill are the highest reported (45 g m−2 day−1) for any environment. This microbial community had the capacity to rapidly oxidize CH4 at concentrations ranging from <1 ppm (microliters per liter) (first-order rate constant [k] = −0.54 h−1) to >104 ppm (k = −2.37 h−1). The physiological characteristics of a methanotroph isolated from the soil (characteristics determined in aqueous medium) and the natural population, however, were similar to those of other natural populations and cultures: the Q10 and optimum temperature were 1.9 and 31°C, respectively, the apparent half-saturation constant was 2.5 to 9.3 μM, and 19 to 69% of oxidized CH4 was assimilated into biomass. The CH4 oxidation rate of this soil under waterlogged (41% [wt/vol] H2O) conditions, 6.1 mg liter−1 day−1, was near rates reported for lake sediment and much lower than the rate of 116 mg liter−1 day−1 in the same soil under moist (11% H2O) conditions. Since there are no large physiological differences between this microbial community and other CH4 oxidizers, we attribute the high CH4 oxidation rate in moist soil to enhanced CH4 transport to the microorganisms; gas-phase molecular diffusion is 104-fold faster than aqueous diffusion. These high CH4 oxidation rates in moist soil have implications that are important in global climate change. Soil CH4 oxidation could become a negative feedback to atmospheric CH4 increases (and warming) in areas that are presently waterlogged but are projected to undergo a reduction in summer soil moisture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号