共查询到20条相似文献,搜索用时 15 毫秒
1.
Gabel F Wang D Madern D Sadler A Dayie K Daryoush MZ Schwahn D Zaccai G Lee X Williams BR 《Journal of molecular biology》2006,359(3):610-623
PKR, an interferon-induced double-stranded RNA activated serine-threonine kinase, is a component of signal transduction pathways mediating cell growth control and responses to stress and viral infection. Analysis of separate PKR functional domains by NMR and X-ray crystallography has revealed details of PKR RNA binding domains and kinase domain, respectively. Here, we report the structural characteristics, calculated from biochemical and neutron scattering data, of a native PKR fraction with a high level of autophosphorylation and constitutive kinase activity. The experiments reveal association of the protein monomer into dimers and tetramers, in the absence of double-stranded RNA or other activators. Low-resolution structures of the association states were obtained from the large angle neutron scattering data and reveal the relative orientation of all protein domains in the activated kinase dimer. Low-resolution structures were also obtained for a PKR tetramer-monoclonal antibody complex. Taken together, this information leads to a new model for the structure of the functioning unit of the enzyme, highlights the flexibility of PKR and sheds light on the mechanism of PKR activation. The results of this study emphasize the usefulness of low-resolution structural studies in solution on large flexible multiple domain proteins. 相似文献
2.
Abbas Shahi Shima Afzali Zahra Firoozi Poopak Mohaghegh Ali Moravej Ali Hosseinipour Maryam Bahmanyar Yaser Mansoori 《Journal of cellular physiology》2023,238(3):513-532
There is a heterogeneous group of rare illnesses that fall into the vasculitis category and are characterized mostly by blood vessel inflammation. Ischemia and disrupted blood flow will cause harm to the organs whose blood arteries become inflamed. Kawasaki disease (KD) is the most prevalent kind of vasculitis in children aged 5 years or younger. Because KD's cardiovascular problems might persist into adulthood, it is no longer thought of as a self-limiting disease. KD is a systemic vasculitis with unknown initiating factors. Numerous factors, such as genetic predisposition and infectious pathogens, are implicated in the etiology of KD. As endothelial cell damage and inflammation can lead to coronary endothelial dysfunction in KD, some studies hypothesized the crucial role of pyroptosis in the pathogenesis of KD. Additionally, pyroptosis-related proteins like caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC), proinflammatory cytokines like IL-1 and IL-18, lactic dehydrogenase, and Gasdermin D (GSDMD) have been found to be overexpressed in KD patients when compared to healthy controls. These occurrences may point to an involvement of inflammasomes and pyroptotic cell death in the etiology of KD and suggest potential treatment targets. Based on these shreds of evidence, in this review, we aim to focus on one of the well-defined inflammasomes, NLRP3, and its role in the pathophysiology of KD. 相似文献
3.
Two calcium- and light-dependent protein kinases have been reported in etiolated Cucumis sativus cotyledons (Vidal et al. 2007). In the present work, we studied casein kinase (CK) activity in etiolated cucumber cotyledons of in-gel and in vitro kinase assays, using specific CK inhibitors, and ATP and GTP as phosphate donors. Two proteins with CK activity were detected in both casein gels and autophosphorylation assays. One of them, with a molecular mass of approximately 36 kDa, showed biochemical CK1 characteristics: it was inhibited by specific CK1 inhibitors and only used ATP as phosphate donor. The second, with a molecular mass of approximately 38 kDa, had CK2 characteristics; it used both ATP and GTP as phosphate donors, was inhibited by all specific CK2 inhibitors, and was recognized by a polyclonal antibody directed against the α catalytic subunit of a CK2 from tobacco. The kinase activity of the CK2 detected in etiolated cucumber cotyledons showed circadian rhythmicity in both in vitro and in-gel casein phosphorylation and in autophosphorylation assays. Thus, our results suggest that the CK2 of approximately 38 kDa could be related to the circadian oscillator of C. sativus cotyledons. 相似文献
4.
Mechanism of PKR activation: dimerization and kinase activation in the absence of double-stranded RNA 总被引:1,自引:0,他引:1
The kinase PKR is a central component of the interferon antiviral pathway. PKR is activated upon binding double-stranded (ds) RNA to undergo autophosphorylation. Although PKR is known to dimerize, the relationship between dimerization and activation remains unclear. Here, we directly characterize dimerization of PKR in free solution using analytical ultracentrifugation and correlate self-association with autophosphorylation activity. Latent, unphosphorylated PKR exists predominantly as a monomer at protein concentrations below 2 mg/ml. A monomer sedimentation coefficient of s(20,w)(0)=3.58 S and a frictional ratio of f/f(0)=1.62 indicate an asymmetric shape. Sedimentation equilibrium measurements indicate that PKR undergoes a weak, reversible monomer-dimer equilibrium with K(d)=450 microM. This dimerization reaction serves to initiate a previously unrecognized dsRNA-independent autophosphorylation reaction. The resulting activated enzyme is phosphorylated on the two critical threonine residues present in the activation loop and is competent to phosphorylate the physiological substrate, eIF2alpha. Dimer stability is enhanced by approximately 500-fold upon autophosphorylation. We propose a chain reaction model for PKR dsRNA-independent activation where dimerization of latent enzyme followed by intermolecular phosphorylation serves as the initiation step. Subsequent propagation steps likely involve phosphorylation of latent PKR monomers by activated enzyme within high-affinity heterodimers. Our results support a model whereby dsRNA functions by bringing PKR monomers into close proximity in a manner that is analogous to the dimerization of free PKR. 相似文献
5.
Katherine Launer-Felty Ahmed M. Wahid James L. Cole 《Journal of molecular biology》2010,402(4):638-644
Protein kinase R (PKR) is an interferon-induced kinase that plays a pivotal role in the innate immunity pathway for defense against viral infection. PKR is activated to undergo autophosphorylation upon binding to RNAs that contain duplex regions. Activated PKR phosphorylates the α-subunit of eukaryotic initiation factor 2, thereby inhibiting protein synthesis in virus-infected cells. Viruses have evolved diverse PKR-inhibitory strategies to evade the antiviral response. Adenovirus encodes virus-associated RNA I (VAI), a highly structured RNA inhibitor that binds PKR but fails to activate. We have characterized the stoichiometry and affinity of PKR binding to define the mechanism of PKR inhibition by VAI. Sedimentation velocity and isothermal titration calorimetry measurements indicate that PKR interactions with VAI are modulated by Mg2+. Two PKR monomers bind in the absence of Mg2+, but a single monomer binds in the presence of divalent ion. Known RNA activators of PKR are capable of binding multiple PKR monomers to allow the kinase domains to come into close proximity and thus enhance dimerization. We propose that VAI acts as an inhibitor of PKR because it binds and sequesters a single PKR in the presence of divalent cation. 相似文献
6.
Lei-Lei Chen Yong-Bo Wang Ju-Xian Song Wan-Kun Deng Jia-Hong Lu Li-Li Ma 《Autophagy》2017,13(11):1969-1980
Recent studies have demonstrated that dysregulation of macroautophagy/autophagy may play a central role in the pathogenesis of neurodegenerative disorders, and the induction of autophagy protects against the toxic insults of aggregate-prone proteins by enhancing their clearance. Thus, autophagy has become a promising therapeutic target against neurodegenerative diseases. In this study, quantitative phosphoproteomic profiling together with a computational analysis was performed to delineate the phosphorylation signaling networks regulated by 2 natural neuroprotective autophagy enhancers, corynoxine (Cory) and corynoxine B (Cory B). To identify key regulators, namely, protein kinases, we developed a novel network-based algorithm of in silico Kinome Activity Profiling (iKAP) to computationally infer potentially important protein kinases from phosphorylation networks. Using this algorithm, we observed that Cory or Cory B potentially regulated several kinases. We predicted and validated that Cory, but not Cory B, downregulated a well-documented autophagy kinase, RPS6KB1/p70S6K (ribosomal protein S6 kinase, polypeptide 1). We also discovered 2 kinases, MAP2K2/MEK2 (mitogen-activated protein kinase kinase 2) and PLK1 (polo-like kinase 1), to be potentially upregulated by Cory, whereas the siRNA-mediated knockdown of Map2k2 and Plk1 significantly inhibited Cory-induced autophagy. Furthermore, Cory promoted the clearance of Alzheimer disease-associated APP (amyloid β [A4] precursor protein) and Parkinson disease-associated SNCA/α-synuclein (synuclein, α) by enhancing autophagy, and these effects were dramatically diminished by the inhibition of the kinase activities of MAP2K2 and PLK1. As a whole, our study not only developed a powerful method for the identification of important regulators from the phosphoproteomic data but also identified the important role of MAP2K2 and PLK1 in neuronal autophagy. 相似文献
7.
The double-strand RNA-dependent protein kinase PKR plays a significant role in a sustained ER stress-induced apoptosis 总被引:1,自引:0,他引:1
Sustained ER stress leads to apoptosis. However, the exact mechanism still remains to be elucidated. Here, we demonstrate that the double strand RNA-dependent protein kinase (PKR) is involved in the ER stress-mediated signaling pathway. ER stress rapidly activated PKR, inducing the phosphorylation of eIF2alpha, followed by the activation of the ATF4/CHOP pathway. ER-stress-mediated eIF2alpha/ATF4/CHOP signaling and associated cell death was markedly reduced by PKR knockdown. We also found that PKR activation was mediated by PACT, the expression of which was elevated by ER-stress. These results indicate that the ER-stress-mediated eIF2alpha/ATF4/CHOP/cell death pathway is, to some degree, dependent on PACT-mediated PKR activation apart from the PERK pathway. 相似文献
8.
Jeffrey C. Hsiao Atara R. Neugroschl Ashley J. Chui Cornelius Y. Taabazuing Andrew R. Griswold Qinghui Wang Hsin-Che Huang Elizabeth L. Orth-He Daniel P. Ball Giorgos Hiotis Daniel A. Bachovchin 《The Journal of biological chemistry》2022,298(7)
CARD8 is a pattern-recognition receptor that forms a caspase-1-activating inflammasome. CARD8 undergoes constitutive autoproteolysis, generating an N-terminal (NT) fragment with a disordered region and a ZU5 domain and a C-terminal (CT) fragment with UPA and CARD domains. Dipeptidyl peptidase 8 and dipeptidyl peptidase 9 inhibitors, including Val-boroPro, accelerate the degradation of the NT fragment via a poorly characterized proteasome-mediated pathway, thereby releasing the inflammatory CT fragment from autoinhibition. Here, we show that the core 20S proteasome, which degrades disordered and misfolded proteins independent of ubiquitin modification, controls activation of the CARD8 inflammasome. In unstressed cells, we discovered that the 20S proteasome degrades just the NT disordered region, leaving behind the folded ZU5, UPA, and CARD domains to act as an inhibitor of inflammasome assembly. However, in Val-boroPro–stressed cells, we show the 20S proteasome degrades the entire NT fragment, perhaps due to ZU5 domain unfolding, freeing the CT fragment from autoinhibition. Taken together, these results show that the susceptibility of the CARD8 NT domain to 20S proteasome-mediated degradation controls inflammasome activation. 相似文献
9.
Mutations in protein kinase subdomain X differentially affect MEKK2 and MEKK1 activity 总被引:1,自引:0,他引:1
MAPK/ERK kinase kinase 2 (MEKK2) is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family of protein kinases. MAP3Ks are components of a three-tiered protein kinase pathway in which a MAP3K phosphorylates and activates a mitogen-activated protein kinase kinase (MAP2K), which in turn activates a mitogen-activated protein kinase (MAPK). We have previously identified residues within protein kinase subdomain X in the MAP3K, MEKK1, that are critical for its interaction with the MAP2K, MKK4, and MEKK1-induced MKK4 activation. We report here that kinase subdomain X also plays a critical role in MEKK2 activity. Select point mutations in subdomain X impair MEKK2 phosphorylation of the MAP2Ks, MKK7 and MEK5, abolish MEKK2-induced activation of the MAPKs, JNK1 and ERK5, and diminish MEKK2-dependent activation of an AP-1 reporter gene. Interestingly, the spectrum of mutations in subdomain X of MEKK2 that affects its activity is overlapping with but not identical to those that have effects on MEKK1. Thus, mutations in subdomain X differentially affect MEKK2 and MEKK1. 相似文献
10.
Tyrosine phosphorylation in plants could be performed only by dual-specificity kinases. Arabidopsis thaliana dual-specificity protein kinase (AtSTYPK) exhibited strong preference for manganese over magnesium for its kinase activity. The kinase autophosphorylated on serine, threonine and tyrosine residues and phosphorylated myelin basic protein on threonine and tyrosine residues. The AtSTYPK harbors manganese dependent serine/threonine kinase domain, COG3642. His248 and Ser265 on COG3642 are conserved in AtSTYPK and the site-directed mutant, H248A showed loss of serine/threonine kinase activity. The protein kinase activity was abolished when Thr208 in the TEY motif and Thr293 of the activation loop were converted to alanine. The conversion of Thr284 in the activation loop to alanine resulted in an increased phosphorylation. This study reports the first identification of a manganese dependent dual-specificity kinase and the importance of Thr208, Thr284, and Thr293 residues in the regulation of kinase activity. 相似文献
11.
Because of the importance of cell signalling processes in proliferation and differentiation, the adenylate cyclase pathway was studied, specifically the protein kinase A (PKA) in Leishmania amazonensis. The PKAs of soluble (SF) and enriched membrane fractions (MF) from infective/non-infective promastigotes and axenic amastigotes were assayed. In order to purify the PKA molecule, fractions were chromatographed on DEAE-cellulose columns and the phosphorylative activity was evaluated using [gamma(32)P]-ATP as the phosphate source. These experiments were performed in the presence of cyclic adenosine monophosphate (cAMP) and an inhibitor of PKA. Our data demonstrated that the PKA activity was significantly higher (about two times) in SF from promastigotes with a high concentration of metacyclic forms, when compared with the non-infective promastigotes, suggesting an association of this activity and the metacyclogenesis process. A discrete phosphorylative activity in axenic amastigotes was observed. As the adenylate cyclase/cAMP pathway would be involved in the parasite-host interiorization, the PKA activity may constitute a good intracellular target for studies of leishmanicidal drugs. 相似文献
12.
We investigated the possible translational role which elevated concentrations of highly purified Semliki Forest virus (SFV) capsid (C)-protein molecules may play in a cell-free translation system. Here we decomonstrate that in the absence of double-stranded RNA high concentrations of C protein triggered the phosphorylation of the interferon-induced, double-stranded RNA-activated protein kinase, PKR. Activated PKR in turn phosphorylated its natural substrate, the subunit of eukaryotic initiation factor 2 (eIF-2), thereby inhibiting initiation of host cell translation. These findings were further strengthened by experiments showing that during natural infection with SFV the maximum phosphorylation of PKR coincided with the maximum synthesis of C protein 4–9 hours post infection. Thus, our results demonstrate that high concentrations of C-protein molecules may act in a hitherto novel mechanism on PKR to inhibit host cell protein synthesis during viral infection. 相似文献
13.
Liver fibrosis is a reversible pathological overreaction during the self‐repair of liver injuries, and it is the common period of chronic liver diseases induced by different pathogenesis progress into cirrhosis and even hepatocellular carcinoma. Pyroptosis, a novel form of programmed cell death, is reported to take part in the pathogenesis and progression of acute or chronic liver diseases and liver fibrosis. Caspase‐1 dependent canonical pathway and caspase‐4/‐5/‐11 mediated noncanonical pathway are the two signalling pathways to induce pyroptosis. The activation of inflammasomes under the stimulation of pathogenic microorganisms and danger signals can initiate the pyroptotic pathway and release large amounts of proinflammatory and profibrotic cytokines. This article comprehensively summarizes recent researches focused on the mechanism of pyroptosis and its role in major hepatic cells, which can provide potential therapeutic strategies for liver fibrosis. 相似文献
14.
15.
Jihye Han Joonbeom Bae Chang-Yong Choi Sang-Pil Choi Hyung-Sik Kang Eun-Kyeong Jo 《Autophagy》2016,12(12):2326-2343
Severe hepatic inflammation is a common cause of acute or chronic liver disease. Macrophages are one of the key mediators which regulate the progress of hepatic inflammation. Increasing evidence shows that the TAM (TYRO3, AXL and MERTK) family of RTKs (receptor tyrosine kinases), which is expressed in macrophages, alleviates inflammatory responses through a negative feedback loop. However, the functional contribution of each TAM family member to the progression of hepatic inflammation remains elusive. In this study, we explore the role of individual TAM family proteins during autophagy induction and evaluate their contribution to hepatic inflammation. Among the TAM family of RTKs, AXL (AXL receptor tyrosine kinase) only induces autophagy in macrophages after interaction with its ligand, GAS6 (growth arrest specific 6). Based on our results, autophosphorylation of 2 tyrosine residues (Tyr815 and Tyr860) in the cytoplasmic domain of AXL in mice is required for autophagy induction and AXL-mediated autophagy induction is dependent on MAPK (mitogen-activated protein kinase)14 activity. Furthermore, induction of AXL-mediated autophagy prevents CASP1 (caspase 1)-dependent IL1B (interleukin 1, β) and IL18 (interleukin 18) maturation by inhibiting NLRP3 (NLR family, pyrin domain containing 3) inflammasome activation. In agreement with these observations, axl?/? mice show more severe symptoms than do wild-type (Axl+/+) mice following acute hepatic injury induced by administration of lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). Hence, GAS6-AXL signaling-mediated autophagy induction in murine macrophages ameliorates hepatic inflammatory responses by inhibiting NLRP3 inflammasome activation. 相似文献
16.
17.
Protein kinase, which phosphorylated phosvitin at the expense of ATP but did not phosphorylate casein, protamine, and histone mixture, was obtained by DEAE-cellulose column chromatography of the extract from the embryos of the sea urchin, Strongylocentrotus intermedius. This enzyme, partially purified by DEAE-cellulose column, reversibly catalyzed the reaction of phosvitin phosphorylation. This indicates that the sea urchin embryos contain phosvitin kinase. Phosvitin kinase in sea urchin embryos is somewhat different from that found in the other types of cells, which are able to phosphorylate casein as well as phosvitin. In unfertilized eggs, the activity of this enzyme was found only in the supernatant fraction obtained by centrifuging the homogenate at 10,000g for 20 min. The activity in the embryos at the swimming and the mesenchyme blastula stage was higher than in unfertilized eggs, and was localized in the sedimentable fraction obtained by centrifuging the homogenate of the embryos at 10,000g for 20 min. The highest activity of phosvitin kinase was observed in the embryos at the mesenchyme blastula stage, and the enzyme activity became quite low at the late gastrula stage. The activity and the intracellular distribution of phosvitin kinase changed during the development. The enzyme in this sedimentable fraction was not solubilized with 1% Triton X-100 but was extracted by 1 M NaCl. 相似文献
18.
Reiter AK Bolster DR Crozier SJ Kimball SR Jefferson LS 《Biochemical and biophysical research communications》2008,374(2):345-350
The AMP-activated protein kinase (AMPK) represses signaling through the mammalian target of rapamycin complex 1 (mTORC1). In muscle, repression of mTORC1 leads to a reduction in global protein synthesis. In contrast, repression of mTORC1 in the liver has no immediate effect on global protein synthesis. In the present study, signaling through mTORC1 and translation of specific mRNAs such as those bearing a 5′-terminal oligopyrimidine (TOP) tract and were examined in rat liver following activation of AMPK after treadmill running. Activation of AMPK repressed translation of the TOP mRNAs encoding rpS6, rpS8, and eEF1α. In contrast, neither global protein synthesis nor translation of mRNAs encoding GAPDH or β-actin was changed. Basal phosphorylation of the mTORC1 target 4E-BP1, but not S6K1 or rpS6, was reduced following activation of AMPK. Thus, in liver, AMPK activation repressed translation of TOP mRNAs through a mechanism distinct from downregulated phosphorylation of S6K1 or rpS6. 相似文献
19.
Astroglial beta-adrenergic receptors (beta-ARs) are functionally linked to regulate cellular morphology. In primary cultures, the beta-AR agonist isoproterenol (ISP) can transform flat polygonal astrocytes into process-bearing, mature stellate cells by 48 h, an effect that can be blocked by the beta-AR antagonist, propranolol. ISP induced immediate activation of protein kinase A (PKA) which persisted up to 2 h, with no visible change in cell morphology. However, activation of PKA was sufficient to drive the process of transformation to completion, suggesting the involvement of downstream regulators of PKA. In addition to PKA inhibitors, the mitogen-activated protein kinase (MAPK) kinase inhibitor PD098059 also blocked ISP-induced morphological transformation. ISP treatment resulted in a biphasic response of cellular phosphorylated MAPK (phosphorylated extracellular signal-regulated kinase; p-ERK) level: an initial decline in p-ERK level followed by a sustained induction at 12-24 h, both of which were blocked by PKA inhibitor. The induction in pERK level coincided with initiation of morphological differentiation of the astrocytes and nuclear translocation of p-ERK. A long-lasting activation of p-ERK activity by ISP, at a later stage, appears to be critical for the transformation of astrocytes. 相似文献
20.
Jon P. Durkin Balu Chakravarthy Roger Tremblay James F. Whitfield 《Cellular signalling》1990,2(6):569-575
The viral src protein kinase, pp60v-src, is a powerful intracellular mitogen which can initiate and maintain the proliferation of quiescent cells in the absence of any exogenous growth factors. In an attempt to understand how pp60v-src induces proliferation, we examined the early events in the G0 to G1 transition caused by the activation of a thermolabile v-src protein in quiescent, serum-starved tsRSV-transformed NRK cells. The reactivation of pp60v-src, in the presence of exogenous growth factors, triggered a rapid biphasic surge of membrane-associated protein kinase C (PKC) activity. Unlike TPA-stimulated PKC activity, the pp60v-src-induced increase in PKC was readily extracted from membranes by EGTA. The down-regulation of PKC activity in these quiescent cells by prolonged exposure to TPA strongly inhibited the ability of the reactivated v-src protein to stimulate DNA replication in serum-deficient medium, suggesting that PKC plays a role in the initial signal by which the viral enzyme induces the G0 to G1 transition in NRK cells. 相似文献