首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Heparin, an inhibitor of inositol trisphosphate (InsP3)-induced Ca2+ release in smooth muscle and non-muscle cells, was injected into intact frog skeletal muscle fibres. Ca2+ release from the sarcoplasmic reticulum was elicited by the normal action potential mechanism and monitored by both fura-2 fluorescence and an intrinsic birefringence signal. Both optical signals, and hence Ca2+ release, were unaffected by high concentrations of heparin. This result argues against a major physiological role of InsP3 as a chemical messenger of excitation-contraction coupling in skeletal muscle.  相似文献   

4.
5.
Excitation-contraction (EC) coupling in striated muscles is mediated by the cardiac or skeletal muscle isoform of voltage-dependent L-type Ca(2+) channel (Ca(v)1.2 and Ca(v)1.1, respectively) that senses a depolarization of the cell membrane, and in response, activates its corresponding isoform of intracellular Ca(2+) release channel/ryanodine receptor (RyR) to release stored Ca(2+), thereby initiating muscle contraction. Specifically, in cardiac muscle following cell membrane depolarization, Ca(v)1.2 activates cardiac RyR (RyR2) through an influx of extracellular Ca(2+). In contrast, in skeletal muscle, Ca(v)1.1 activates skeletal muscle RyR (RyR1) through a direct physical coupling that negates the need for extracellular Ca(2+). Since airway smooth muscle (ASM) expresses Ca(v)1.2 and all three RyR isoforms, we examined whether a cardiac muscle type of EC coupling also mediates contraction in this tissue. We found that the sustained contractions of rat ASM preparations induced by depolarization with KCl were indeed partially reversed ( approximately 40%) by 200 mum ryanodine, thus indicating a functional coupling of L-type channels and RyRs in ASM. However, KCl still caused transient ASM contractions and stored Ca(2+) release in cultured ASM cells without extracellular Ca(2+). Further analyses of rat ASM indicated that this tissue expresses as many as four L-type channel isoforms, including Ca(v)1.1. Moreover, Ca(v)1.1 and RyR1 in rat ASM cells have a similar distribution near the cell membrane in rat ASM cells and thus may be directly coupled as in skeletal muscle. Collectively, our data implicate that EC-coupling mechanisms in striated muscles may also broadly transduce diverse smooth muscle functions.  相似文献   

6.
Experiments were carried out to test the hypothesis that mM concentrations of fura-2, a high-affinity Ca2+ buffer, inhibit the release of Ca2+ from the sarcoplasmic reticulum (SR) of skeletal muscle fibers. Intact twitch fibers from frog muscle, stretched to a long sarcomere length and pressure-injected with fura-2, were activated by an action potential. Fura-2's absorbance and fluorescence signals were measured at different distances from the site of fura-2 injection; thus, the myoplasmic free Ca2+ transient (delta [Ca2+]) and the amount and rate of SR Ca2+ release could be estimated at different myoplasmic concentrations of fura-2 ([fura-2T]). At [fura-2T] = 2-3 mM, the amplitude and half-width of delta [Ca2+] were reduced to approximately 25% of the values measured at [fura-2T] less than 0.15 mM, whereas the amount and rate of SR Ca2+ release were enhanced by approximately 50% (n = 5; 16 degrees C). Similar results were observed in experiments carried out at low temperature (n = 2; 8.5-10.5 degrees C). The finding of an enhanced rate of Ca2+ release at 2-3 mM [fura-2T] is opposite to that reported by Jacquemond et al. (Jacquemond, V., L. Csernoch, M. G. Klein, and M. F. Schneider. 1991. Biophys. J. 60:867-873) from analogous experiments carried out on cut fibers. In two experiments involving the injection of larger amounts of fura-2, reductions in SR Ca2+ release were observed; however, we were unable to decide whether these reductions were due to [fura-2T] or to some nonspecific effect of the injection itself. These experiments do, however, suggest that if large [fura-2T] inhibits SR Ca2+ release in intact fibers, [fura-2T] must exceed 6 mM to produce an effect comparable to that reported by Jacquemond et al. in cut fibers. Our clear experimental result that 2-3 mM [fura-2T] enhances SR Ca2+ release supports the proposal that delta [Ca2+] triggered by an action potential normally feeds back to inhibit further release of Ca2+ from the SR (Baylor, S.M., and S. Hollingworth. 1988. J. Physiol. [Lond.]. 403:151-192). Our results provide no support for the hypothesis that Ca(2+)-induced Ca2+ release plays a significant role in excitation-contraction coupling in amphibian skeletal muscle.  相似文献   

7.
According to the current views the direct and indispensable source of Ca2+ activating contraction is sarcoplasmic reticulum (SR). Ca2+ is released from the SR when its release channels (ryanodine receptors) are activated by Ca2+ influx through the L-type Ca2+ channels (dihydropyridine receptors). In contrast, ryanodine receptors of skeletal muscles are activated by conformational changes in dihydropyridine receptors induced by sarcolemmal voltage. Ca2+ influx is not necessary for their activation. In this review the papers not quite conforming with the current views are referred to and discussed. Their results suggest that SR is not an indispensable source of contractile Ca2+ at least in some mammalian species, and that cardiac ryanodine receptors may be activated by conformational changes in dihydropyridine receptors without Ca2+ influx (like in skeletal muscle). This may be a mechanism parallel to or accessory to the Ca2+ induced release of Ca2+ (CIRC).  相似文献   

8.
9.
10.
Excitation-contraction coupling in crab muscle fibers was studied in voltage-clamp conditions. Extracellular calcium is essential for the mechanical activity. Two calcium influxes induced by membrane depolarization contribute to tension development: one is the inward calcium current responsible for the phasic tension, the other is a calcium influx dependent on extracellular sodium and calcium concentrations and is responsible for the tonic tension. These calcium influxes are not sufficient to activate contractile proteins. Experiments with procaine and caffeine show that a calcium release from the sarcoplasmic reticulum is required.  相似文献   

11.
Relations between the membrane potential and the tension associated with changes in membrane potential were analyzed in barnacle giant muscle fibers by using voltage clamp techniques. With a step change in membrane potential the tension reaches its final level with a time course which is expressed by the difference of two exponential functions. The time constants τ1 (0.2–0.4 sec at 23°C) and τ2 (0.07–0.12 sec at 23°C) are independent of the new membrane potential at least for a relatively small membrane potential change while the final level of tension is a function of the potential. Decreasing the temperature increases both τ1 and τ2 (Q10 = -2 to -3) and the increase of the tonicity of the external medium increases τ1 but not τ2. The final level of tension is related by an S-shaped curve to the membrane potential. The slope of the final tension-membrane potential curve increases with increasing external Ca concentration and is reduced when a small amount of transition metal ions is added to the medium. This suggests that the influx of Ca ions through the membrane is an important factor in the development of tension.  相似文献   

12.
13.
14.
15.
Summary The segmented trunk muscle (myotome muscle) of the lancelet (Branchiostoma lanceolatum), a pre-vertebrate chordate, was studied in order to gain information regarding the evolution of excitation-contraction (EC) coupling.Myotome membrane vesicles could be separated on isopycnic sucrose gradients into two main fractions, probably comprising solitary microsomes and diads of plasma membrane and sarcoplasmic reticulum, respectively. Both fractions bound the dihydropyridine PN 200/110 and the phenylalkylamine (–)D888 (devapamil) while specific ryanodine binding was observed in the diad preparation only. Pharmacological effects on Ca2+ currents measured under voltage-clamp conditions in single myotome fibers included a weak block by the dihydropyridine nifedipine and a shift of the voltage dependences of inactivation and restoration to more negative potentials by (–)D888. After blocking the Ca2+ current by cadmium in voltage-clamped single fibers, the contractile response persisted and a rapid intramembrane charge movement could be demonstrated. Both responses exhibited a voltage sensitivity very similar to the one of the voltage-activated Ca2+ channels.Our biochemical and electrophysiological results indicate that the EC coupling mechanism of the protochordate myotome cell is similar to that of the vertebrate skeletal muscle fiber: Intracellular Ca2+ release, presumably taking place via the ryanodine receptor complex, is under control of the cell membrane potential. The sarcolemmal Ca2+ channels might serve as voltage sensors for this process.We thank Drs. H.Ch. Lüttgau and L.M.G. Heilmeyer, Jr. for stimulating discussions during the work, Dr. N.R. Brandt for helpful suggestions, and Drs. A.H. Caswell and M. Michalak for their generous gifts of antibodies. We also thank Ms. P. Goldmann, Mr. R. Schwalm, and Mr. U. Siemen for technical support and Ms. E. Linnepe for editorial help. This work was supported by grant G1 72/1-5 of the Deutsche Forschungsgemeinschaft. R. Benterbusch was recipient of a scholarship by the Studienstiftung des Deutschen Volkes.  相似文献   

16.
We investigated the mechanisms that underlie the responses to norepinephrine (NE) and thromboxane (Tx) A(2) (TxA2) in the canine pulmonary vasculature with fura 2 fluorimetric, intracellular microelectrode, and force transduction techniques. KCl, caffeine, and cyclopiazonic acid elevated intracellular Ca2+ concentration levels and tone, indicating that Ca2+ mobilization is sufficient to produce contraction. However, contractions evoked by NE or the TxA2 mimetic U-46619 were unaffected by nifedipine or by omitting external Ca2+ and were reduced only partially by depleting the internal Ca2+ store; furthermore, NE-evoked depolarization was subthreshold for voltage-dependent Ca2+ currents. Agonist-evoked contractions were insensitive to inhibitors of protein kinase C (calphostin C and chelerythrine), mitogen-activated protein kinase kinase (PD-98059), and p38 kinase (SB-203580) but were abolished by the tyrosine kinase inhibitor genistein and the Rho kinase inhibitor Y-27632. We conclude that, although Ca2+ influx and Ca2+ release are sufficient for contraction, they are not necessary for adrenergic or TxA2 contractions. Instead, excitation-contraction coupling involves the activation of tyrosine kinase and Rho kinase, leading to enhanced Ca2+ sensitivity of the contractile apparatus.  相似文献   

17.
In single muscle fibers from the giant barnacle, a small decrease in muscle length decreases both the calcium activation and the peak isometric tension produced by a constant current stimulus. The effect is most pronounced if the length change immediately precedes the stimulation. In some cases, the decrease in tension with shortening can be accounted for almost entirely by a decrease in calcium release rather than changes in mechanical factors such as filament geometry. During the constant current stimulation the muscle membrane becomes more depolarized at longer muscle lengths than at the shorter muscle lengths. Under voltage clamp conditions, when the membrane potential is kept constant during stimulation, there is little length dependence of calcium release. Thus, the effect of length on calcium release is mediated through a change in membrane properties, rather than an effect on a subsequent step in excitation-contraction coupling. Stretch causes the unstimulated fiber membrane to depolarize by about l mV while release causes the fiber membrane to hyperpolarize by about the same amount. The process causing this change in potential has an equilibrium potential nearly 10 mV hyperpolarized from the resting level. This change in resting membrane potential with length may account for the length dependence of calcium release.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号