首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human peripheral blood lymphocytes stimulated with phytohemagglutinin and a lymphocyte model consisting of the RPMI 6410 cell, a human virus-transformed B cell, required added methionine (Met) for growth of the cultures. This failure to meet all needs for Met via endogenous synthesis, which is characteristic of oncogenic transformation, occurred even in the presence of adequate homocysteine, methylfolate (5-CH3-H4PteGlu) and cobalamin (Cbl)-dependent methionine synthetase activity. Folinic acid (5-CHO-H4PteGlu), which provides available folate independently of Cbl, improved growth only slightly in the absence of Met. Free Cbl at 222 nM, an amount great enough to alter other intracellular events, failed to increase growth in the absence of Met, but 0.22 nM Cbl bound to transcobalamin II did, however, enhance growth.  相似文献   

2.
[2-14C]Tetrahydropteroylglutamic acid and 5-[G-3H]methyltetrahydropteroylglutamic acid were given intraperitoneally to fruit bats. Folate polyglutamates were formed in the liver from both substrates in different amounts and at different rates. The methylfolate pool appeared to remain separate from the tetrahydrofolate pool. More polyglutamate was formed from tetrahydropteroylglutamic acid than from 5-methyltetrahydropteroylglutamic acid. There was a fall in the folate content of the liver in the vitamin B-12-deficient bat and a more rapid incorporation of folates into polyglutamates but thereafter a more rapid loss of the labelled folate from liver.  相似文献   

3.
The specific activities of three B12-dependent enzymes in Rhizobium meliloti were compared in relation to morphological changes in the bacterium. The critical levels of ribonucleotide reductase and methylmalonyl-CoA mutase seemed to be maintained, while the level of methionine synthase was probably insufficient for cell multiplication. A close relationship was observed between the methionine synthase level and morphological changes in the bacterium. The addition of folate with methionine to the cobalt-deficient medium did not have a positive effect on bacterial growth. A sufficient amount of tetrahydrofolate was detected in the cobalt-deficient elongated cells. These findings might suggest the important role of methionine synthase in cell multiplication, which was unpredictable from the methylfolate trap hypothesis.  相似文献   

4.
1. Folate metabolism was studied during the early phases of liver regeneration after partial hepatectomy in rats accustomed to eating during the first 8h of a daily 12h dark period. 2. The content of 5-CH(3)-H(4)folate was drastically decreased during the first hours of regeneration. 3. The total HCO-H(4)folate coenzymes showed a constant decrease during the first 3 days of regeneration, and a continuous interconversion between 5-HCO-H(4)folate and 10-HCO-H(4)folate. 4. 10-HCO-H(4)folate synthetase, serine hydroxymethyl-transferase and 5,10-CH(2)-H(4)folate dehydrogenase activities were relatively low during the first hours after the operation, and increased only several hours later. 5. The increase in enzyme activities showed a stepwise pattern, apparently due to an interaction between the regeneration process and the controlled feeding schedules.  相似文献   

5.
A validated, using in vitro biomechanical testing, finite element model was used to evaluate the affects of (1) cement augmentation and (2) an intact posterior cortex in osteoporotic bone. The presence of augmentation and/or a posterior cortical cortex increased the stabilization of the pedicle screw 2–5 fold. Placement of cement influenced failure load and toggle; with distal placement having the largest increase in failure load and decrease in cephalad–caudad toggle. The presence of posterior cortex caused a decrease in the amount of toggle, a proximal shift of the center of rotation and an increase in the maximum failure force.  相似文献   

6.
A crude synthetic preparation called crude "X-methyl" folate has previously been shown to function as a folate antagonist for rats and chicks. This product has been shown to contain two folate antagonists: 9-methyl folate, present as 6% by weight of the product and which has low activity as a folate antagonist for Streptococcus faecalis, and pyrrofolic acid, a compound present in small amounts (0.04%), but having high anti-folate biological activity for S. faecalis. These experiments deal with the antifolate activity of these two fractions for the rat as measured by their effects on histidine oxidation. Rats were fed a purified diet based on 20% vitamin-free casein and containing 1.0% sulfasuxidine. When this diet was supplemented with a marginal amount of folic acid (0.3 mg per kg diet), the addition of 4 g of crude antagonist decreased histidine oxidation and decreased liver folate levels. The addition of 240 mg of pure 9-methyl folic acid (amount of 9-methyl folic acid in 4 g of crude) produced similar decreases in histidine oxidation and liver folate levels. A concentrate of pyrrofolic acid (equivalent to 4 g of crude) free of 9-methyl folic acid produced no decrease in histidine oxidation and minimal changes in liver folate. This indicates that the folate antagonist activity observed previously with animals is probably due to the 9-methyl folic acid component rather than to the pyrrofolic acid activity.  相似文献   

7.
The specificity of hog liver folylpolyglutamate synthetase for folate substrates and for nucleotide and glutamate substrates and analogues has been investigated. The kinetic mechanism, determined by using aminopterin as the folate substrate, is ordered Ter-Ter with MgATP binding first, folate second, and glutamate last. This mechanism precludes the sequential addition of glutamate moieties to enzyme-bound folate. Folate, dihydrofolate, and tetrahydrofolate possess the optimal configurations for catalysis (kcat = 2.5 s-1) while 5- and 10-position substitutions of the folate molecule impair catalysis. kcat values decrease with increasing glutamate chain length, and the rate of decrease varies depending on the state of reduction and substitution of the folate molecule. Folate binding, as assessed by on rates, is slow. Dihydrofolate exhibits the fastest rate, and the rates are slightly reduced for tetrahydrofolate and 10-formyltetrahydrofolate and greatly reduced for 5-methyltetrahydrofolate and folic acid. The on rates for most pteroyldiglutamates are similar to the rates for their respective monoglutamate derivatives, but further extension of the glutamate chain results in a progressive decrease in on rates. Tetrahydrofolate polyglutamates are the only long glutamate chain length folates with detectable substrate activity. The specificity of the L-glutamate binding site is very narrow. L-Homocysteate and 4-threo-fluoroglutamate are alternate substrates and act as chain termination inhibitors in that their addition to the folate molecule prevents or severely retards the further addition of glutamate moieties. The Km for glutamate is dependent on the folate substrate used. MgATP is the preferred nucleotide substrate, and beta,gamma-methylene-ATP, beta,gamma-imido-ATP, adenosine 5'-O-(3-thiotriphosphate), P1,P5-di(adenosine-5') pentaphosphate, and free ATP4- are potent inhibitors of the reaction.  相似文献   

8.
DNA methylation is critical for normal genomic structure and function and is dependent on adequate folate status. A polymorphism (677C-->T) in a key folate enzyme, methylenetetrahydrofolate reductase (MTHFR), may impair DNA methylation when folate intake is inadequate and may increase the risk of reproductive abnormalities. The present study was designed to evaluate the effect of the MTHFR 677C-->T polymorphism on changes in global DNA methylation in young women consuming a low folate diet followed by repletion with the current Recommended Dietary Allowance (RDA). Women (age 20-30 years) with the TT (variant; n = 19) or CC (n = 22) genotype for the MTHFR 677C-->T polymorphism participated in a folate depletion-repletion study (7 weeks, 115 microg DFE/day; 7 weeks, 400 microg DFE/day). DNA methylation was measured at baseline, week 7, and week 14 using a [3H]methyl acceptance assay and a novel liquid chromatography tandem mass spectrometry assay of the DNA bases methylcytosine and cytosine. [3H]Methyl group acceptance tended to increase (P = 0.08) during depletion in all subjects, indicative of a decrease in global DNA methylation. During repletion, the raw change and the percent change in the methylcytosine/total cytosine ratio increased (P = 0.03 and P = 0.04, respectively) only in the subjects with the TT genotype. Moderate folate depletion in young women may cause a decrease in overall DNA methylation. The response to folate repletion suggests that following folate depletion women with the MTHFR 677 TT genotype have a greater increase in DNA methylation with folate repletion than women with the CC genotype.  相似文献   

9.
《Plant science》1987,50(2):91-96
Microbiological assay showed that in Euglena gracilis cultures the amount of cell folates reaches its maximum at the beginning of the culture cycle and rapidly and markedly decreases long before the cells reduce their duplication rate. [3H]Folic acid was a suitable precursor of Euglena folates (a full recovery of growth in sulfanilamide inhibited cultures was obtained by addition of folic acid), and a complete radiochromatographic profile of cell folates was obtained by separation on G-25 columns. This allowed the measurement of the rate of folate degradation, obtained from the rate of radioactivity disappearance in chromatographic patterns of extracts corresponding to increasing times of culture cycles. With the exception of the stationary phase, the process of folate degradation showed a first order kinetics with a rate constant of 5.4 + 10−4 min−1 and a half-life of 21 h and 12 min. The rate of folate biosynthesis was calculated by adding the amount of degradation to the measured increase (or decrease) in cell folates. The specific rate reached its maximum (8.6 ng of folinic acid equivalent h−1 for 106 cells) as the culture entered the logarithmic phase of growth and rapidly decreased to about 1/20 of this value before leaving it. This indicates that the logarithmic phase of growth corresponds to a phase in which folate biosynthesis is strongly repressed.  相似文献   

10.
A profound decrease in the concentration of colostral proteins (among immunoglobulins primarily IgG) during the first three days of lactation is accompanied by changes in the molecular heterogeneity of IgA. In the course of lactation, the amount of 7S IgA increases in relation to 10S IgA. The total amount of IgA, after the initial decrease during the first three days, maintains a gradual increase. In addition, a transient increase of natural haemagglutinating antibodies toEscherichia coli (serotype O55) was found in fractions corresponding to IgA and IgG during lactation.  相似文献   

11.
The flavoprotein Escherichia coli methylenetetrahydrofolate reductase (MTHFR) catalyzes the reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate). The X-ray crystal structure of the enzyme has revealed the amino acids at the flavin active site that are likely to be relevant to catalysis. Here, we have focused on two conserved residues, Asp 120 and Glu 28. The presence of an acidic residue (Asp 120) near the N1-C2=O position of the flavin distinguishes MTHFR from all other known flavin oxidoreductases and suggests an important function for this residue in modulating the flavin reactivity. Modeling of the CH(3)-H(4)folate product into the enzyme active site also suggests roles for Asp 120 in binding of folate and in electrostatic stabilization of the putative 5-iminium cation intermediate during catalysis. In the NADH-menadione oxidoreductase assay and in the isolated reductive half-reaction, the Asp120Asn mutant enzyme is reduced by NADH 30% more rapidly than the wild-type enzyme, which is consistent with a measured increase in the flavin midpoint potential. Compared to the wild-type enzyme, the mutant showed 150-fold decreased activity in the physiological NADH-CH(2)-H(4)folate oxidoreductase reaction and in the oxidative half-reaction involving CH(2)-H(4)folate, but the apparent K(d) for CH(2)-H(4)folate was relatively unchanged. Our results support a role for Asp 120 in catalysis of folate reduction and perhaps in stabilization of the 5-iminium cation. By analogy to thymidylate synthase, which also uses CH(2)-H(4)folate as a substrate, Glu 28 may serve directly or via water as a general acid catalyst to aid in 5-iminium cation formation. Consistent with this role, the Glu28Gln mutant was unable to catalyze the reduction of CH(2)-H(4)folate and was inactive in the physiological oxidoreductase reaction. The mutant enzyme was able to bind CH(3)-H(4)folate, but reduction of the FAD cofactor was not observed. In the NADH-menadione oxidoreductase assay, the mutant demonstrated a 240-fold decrease in activity.  相似文献   

12.
An L1210 cell line (JT-1), which can grow in medium supplemented with 1 nM folate, has been isolated. These cells exhibit a slower growth rate than folate-replete parental cells and have a lower ability to transport folate or methotrexate via the reduced folate transport system. Measurements at nanomolar concentrations of folate revealed that the adapted cells have acquired a high-affinity folate-binding protein. Binding to this component at 37 degrees C was rapid and reached a maximum value after 30 min which corresponded in amount to 0.23 +/- 0.3 pmol/mg protein, and excess unlabeled folate added 30 min subsequent to the [3H]folate led to a rapid release of the bound substrate. Radioactivity bound to or released from the cells after 30 min at 37 degrees C remained as unmetabolized folic acid. Binding was also rapid at 0 degrees C but uptake at the plateau was only one-half the value obtained at 37 degrees C. Half-maximal saturation of the binding component (KD) occurred at a folate concentration of 0.065 nM at pH 7.4, while the affinity for folate decreased 30-fold when the pH was reduced to 6.2 (KD = 2.0 nM). 5-Methyltetrahydrofolate was also bound by this component (Ki = 13 nM at pH 7.4) but with a much lower affinity than for folate, while progressively weaker interactions were observed with 5-formyltetrahydrofolate (Ki = 45 nM) and methotrexate (Ki = 325 nM). When the same adaptation procedure was performed with limiting amounts of 5-formyltetrahydrofolate, two additional cell lines, JT-2 and JT-3, were isolated which expressed elevated levels of the folate-binding protein. The binding activity of the latter cells was 0.46 and 1.4 pmol/mg protein, respectively. When the level of binding protein was compared in cells grown at different concentrations of folate, an increase in medium folate from 1 to 500 nM caused a sevenfold reduction in binding activity in the JT-3 cell line, while these same growth conditions had no effect on binding by the other cells. These results indicate that L1210 cells adapted to low concentrations of folate or 5-formyltetrahydrofolate contain elevated levels of a high-affinity binding protein and that this protein is able to mediate the intracellular accumulation of folate compounds. L1210 cells thus appear to have two potential uptake routes for folate compounds, the previously characterized anion-exchange system and a second route mediated by a high-affinity binding protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The effects of severe vitamin A deficiency (liver retinol less than 2 micrograms/g) on hepatic folate metabolism in rats were studied. The oxidation of a [ring-2-14C] histidine load or a [14C]formate load to 14CO2 was significantly depressed in vitamin A-deficient rats and those given histidine also excreted more urinary formiminoglutamic acid (FiGlu) than pair-fed controls. The increase in FiGlu excretion was not due to augmented production from histidine, implicating an impairment of FiGlu catabolism. FiGlu formiminotransferase activity was unaltered in vitamin A-deficient rats, but hepatic tetrahydrofolic acid (THF) concentration was decreased by 58% in vitamin A-deficient rats given a histidine load while 5-methyl-THF concentration was increased by 39%. Formyl-THF and total folate levels were similar to controls. A redistribution of folate coenzymes was not found in vitamin A-deficient rats not force fed histidine. A 43% decrease in 10-formyl-THF dehydrogenase activity, which generates both THF and the 14CO2 from the labeled substrates, and an 81% increase in 5,10-methylene-THF reductase activity, which generates 5-methyl-THF, were found in vitamin A-deficient rats. It appears that the production of severe vitamin A deficiency results in selective changes in the activities of hepatic folate-dependent enzymes, so that when a load of a one-carbon donor is given, THF concentration decreases and metabolism of the load is impaired.  相似文献   

14.
15.
Regulation of 5-methyltetrahydrofolate synthesis.   总被引:1,自引:0,他引:1       下载免费PDF全文
After an intraperitoneal injection of 100 mumol of methionine to rats, there is rapid oxidation of the methyl group of hepatic 5-methyltetrahydrofolate to formate and CO2. Recovery of the methylfolate level starts 2.5 h after the methionine injection, when the hepatic methionine level and the S-adenosylmethionine/S-adenosylhomocysteine ratio have returned to baseline values. S-Adenosylmethionine concentration is still elevated at this time.  相似文献   

16.
Studies are described examining further the decline in folate analogue influx mediated by the one-carbon reduced-folate transport system in HL-60 cells following induction of maturation by cytodifferentiation agents. To facilitate the investigation of the underlying basis of this phenomenon, we derived a variant (HL-60/LCV) with 4-5-fold elevated influx capacity (Vmax) for folate analogues. A commensurate increase in the putative transporter for this system was documented by affinity labeling of these cells with N-hydroxysuccinimide-[3H]aminopterin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the affinity labeled plasma membrane in HL-60/LCV cells delineated a protein peak at Mr = 75,000-80,000. This was substantially greater than the analogous transporter (Mr = 45,000-47,000) we had delineated (Yang, C.-H., Sirotnak, F.M., and Mines, L.S. (1988) J. Biol. Chem. 263, 9703-9709) with the same methodology in the L1210 cell plasma membrane. In addition, the rate of translocation of the Mr = 75,000-80,000 transporter in HL-60 and HL-60/LCV cells was 2-fold lower than the rate of translocation determined for the Mr = 45,000-47,000 transporter in L1210 cells. During induced maturation of HL-60/LCV cells toward the granulocyte pathway, [3H]methotrexate (MTX) influx capacity and the amount of the affinity labeled transporter decreased rapidly in a parallel fashion. The decrease in [3H]MTX influx and in affinity labeling and in the amount of the Mr = 75,000-80,000 transporter was 5-fold following exposure to 210 mM dimethyl sulfoxide (Me2SO) for 5 days during growth in culture. Moreover, during cycloheximide treatment, the decay in [3H]MTX influx at 37 degrees C and in amount of affinity labeled transporter was the same (t1/2 = 144-155 min) for both control and Me2SO-treated HL-60/LCV cells. These results, which reveal no difference in metabolic turnover for control and Me2SO-treated cells, suggest that the decline in folate analogue influx in HL-60/LCV influx cells is a very early event in the program of differentiation and probably occurs by down-regulation of synthesis of the transporter for the one-carbon reduced-folate transport system.  相似文献   

17.
1. The effects of thyroidectomy and of ;acute' and ;chronic' administration of thyroxine on the synthesis of folate coenzymes were studied by determining the liver contents of folate active derivatives and the enzymic activities involved in their biosynthesis. The effect of thyroxine on the same enzymes in vitro was also studied. 2. In thyroidectomized rats the liver contents of folate coenzymes did not change except for a slight decrease in the contents of 5-formyltetrahydrofolate and tetrahydrofolate compared with those in control rats. 3. In the same animals serine hydroxymethyltransferase and formyltetrahydrofolate synthetase activities decreased markedly. 4. The ;chronic' administration of thyroxine to thyroidectomized rats caused more evident variations in the liver contents of folate coenzymes and in particular a decrease in the contents of 5-formyltetrahydrofolate, tetrahydrofolate, 5(or 10)-formyl derivatives of tetrahydropteroylpolyglutamate and of 5(or 10)-formyl derivatives of pteroylpolyglutamate. 5. The enzymic activities did not show significant variations. 6. The ;acute' administration of thyroxine caused changes in the liver contents of some folate derivatives such as 10-formyldihydrofolate, 10-formylfolate, tetrahydrofolate and the 10-formyl derivative of dihydropteroylpolyglutamate. In these animals also the enzymic activities were unchanged. 7. No effect of thyroxine on enzymic activities in vitro was observed.  相似文献   

18.
Intravenous injection of 0.125 mg/kg of venom of Bitis Gabonica in the anaesthetized dog produces an immediate but reversible decrease in total peripheral and coronary vascular resistance. Stroke volume show a transient increase followed by an irreversible reduction. A second dose of 0.25 mg/kg produces the same effect on total peripheral and coronary vascular resistance, but furtherly reduces the stroke volume. A third dose of 0.50 mg/kg kills the animal after an extreme reduction of the stroke volume. The progressive decrease of the stroke volume might be due to a failure of the ventricle to relax, whereas its transient increase immediately after the injection depends on the abrupt fall of the total peripheral resistance.  相似文献   

19.
We studied the molecular basis of the up to 46-fold increased accumulation of folates and methotrexate (MTX) in human leukemia CEM-7A cells established by gradual deprivation of leucovorin (LCV). CEM-7A cells consequently exhibited 10- and 68-fold decreased LCV and folic acid growth requirements and 23-25-fold hypersensitivity to MTX and edatrexate. Although CEM-7A cells displayed a 74-86-fold increase in the reduced folate carrier (RFC)-mediated influx of LCV and MTX, RFC overexpression per se cannot induce a prominently increased folate/MTX accumulation because RFC functions as a nonconcentrative anion exchanger. We therefore explored the possibility that folate efflux activity mediated by members of the multidrug resistance protein (MRP) family was impaired in CEM-7A cells. Parental CEM cells expressed substantial levels of MRP1, MRP4, poor MRP5 levels, whereas MRP2, MRP3 and breast cancer resistance protein were undetectable. In contrast, CEM-7A cells lost 95% of MRP1 levels while retaining parental expression of MRP4 and MRP5. Consequently, CEM-7A cells displayed a 5-fold decrease in the [(3)H]folic acid efflux rate constant, which was identical to that obtained with parental CEM cells, when their folic acid efflux was blocked (78%) with probenecid. Furthermore, when compared with parental CEM, CEM-7A cells accumulated 2-fold more calcein fluorescence. Treatment of parental cells with the MRP1 efflux inhibitors MK571 and probenecid resulted in a 60-100% increase in calcein fluorescence. In contrast, these inhibitors failed to alter the calcein fluorescence in CEM-7A cells, which markedly lost MRP1 expression. Replenishment of LCV in the growth medium of CEM-7A cells resulted in resumption of normal MRP1 expression. These results establish for the first time that MRP1 is the primary folate efflux route in CEM leukemia cells and that the loss of folate efflux activity is an efficient means of markedly augmenting cellular folate pools. These findings suggest a functional role for MRP1 in the maintenance of cellular folate homeostasis.  相似文献   

20.
The rates of synthesis and degradation of arginosuccinate synthetase in rat liver under various dietary conditions were determined. The relative rate of the enzyme synthesis in the livers of rats fed on 70% casein diet was 4.0 times greater than that for rats fed on 5% casein diet. The rate constants of degradation (Kd of argininosuccinate synthetase were estimated to be 0.15 and 0.16 day-1 under 70% and 5% casein feeding, respectively. When the dietary conditions were changed acutely from 70% to 5% casein diet or vice versa, the rates of the enzyme synthesis decreased or increased, respectively, and the rates of enzyme degradation were also affected. The change from 5% to 70% casein diet caused a transient decrease in the rate of degradation. After the enzyme activity had achieved a new steady-state level, the enzyme degradation proceeded at the normal steady rate. On the other hand, the change from 70% to 5% casein diet caused a transient increase in the rate of degradation. Thus, the only factor regulating the amount of enzyme in rat liver is the rate of enzyme synthesis under the steady-state conditions. However, the rates of both enzyme synthesis and degradation are involved in the regulation of the amount of enzyme during dietary transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号