首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this study was to determine retinol, retinyl esters and retinol-binding protein (RBP) as well as carotenoids in plasma, urine, liver and kidneys of randomly selected domestic cats. Retinol (240±64 ng/ml, mean±S.D.) represented one-third of total retinyl esters (736±460 ng/ml) in plasma. Retinyl esters were stearate, palmitate and oleate representing 61±6, 36±13 and 5±3% of total retinyl esters, respectively. In half of the cats, retinyl esters (22±21 ng/ml) were found in the urine. Vitamin A in the livers (4317±1956 μg/g) was significantly higher than in the kidney cortex and medulla (14.16±8.92 and 7.59±4.52 μg/g, respectively, both P<0.001). RBP was detected in the plasma but not in the urine. Immunoreactive RBP was observed in hepatocytes and in the cells of the proximal tubules. β-Carotene was present in plasma but never in tissues. The results show that similar to canines differences in vitamin A metabolism in cats are related to the occurrence of retinyl esters in plasma. They differ, however, with regard to the tissue distribution of β-carotene and the excretion of vitamin A in the urine.  相似文献   

2.
Plasma vitamin A, carotenoids, retinol binding protein (RBP), prealbumin (PA), HDL-and total cholesterol were examined in healthy adult females. Plasma levels of vitamin A and carotene were determined by a spectrophotometric method using trifluoroacetic acid, plasma RBP and PA by single radial immunodiffusion, and HDL-and total cholesterol by enzymatic colorimetry. Vitamin A and carotene mean values resulted as 43.0 +/- 8.2 micrograms/100 ml and 231.9 +/- 69.0 micrograms/100 ml, respectively. RBP and PA values averaged as 4.2 +/- 1.1 mg/100 ml and 29.4 +/- 6.1 mg/100 ml, respectively; whereas HDL-and total cholesterol were 179 +/- 16 mg/100 ml and 57 +/- 8 mg/100 ml. Vitamin A plasma levels were shown to be significantly related (P less than 0.01) to RBP and PA, but not to the other parameters examined (carotene, HDL-and total cholesterol).  相似文献   

3.
Retinyl ester concentrations in plasma from fasting humans, rabbits and rats are usually negligible. In contrast, plasma from fasting dogs contains appreciable amounts of retinyl esters, associated almost entirely with the low-density lipoproteins. This study was undertaken to gather additional information about the nature and origin of canine retinyl ester-containing lipoproteins. We examined the metabolism of endogenous lipoprotein retinyl esters in adult mongrel dogs with moderate vitamin A deficiency. Four animals were fed a diet of oatmeal and tuna fish that provided only 4% of the vitamin A contained in their control rations (15 vs. 367% of the canine recommended daily intake). There was an initial rapid decline in plasma retinyl esters. However, measurable concentrations persisted in plasma for up to 1 year of restricted vitamin A intake. Total plasma retinyl ester concentrations after 6 months of vitamin A deprivation, extrapolated from best-fit monoexponential decay curves for each animal, ranged from 11 to 89% of control, suggesting that there was sustained secretion of retinyl esters from endogenous stores. Density gradient ultracentrifugation of plasma from fasting vitamin A-deprived dogs showed retinyl esters in the very-low- and low-density lipoproteins. After fat and vitamin A feeding retinyl esters appeared among the very-low-, intermediate- and low-density lipoproteins, consistent with the suggestion that chylomicron retinyl esters are first taken up by the liver, and then resecreted as density less than 1.006-1.063 g/ml lipoproteins. Maximal incorporation of dietary retinyl esters into low-density lipoproteins was not reached until 24-48 h. Intermediate-density and beta-migrating low-density lipoprotein retinyl esters were increased markedly in fasting animals maintained on cholesterol- and saturated fat-enriched diets. These observations provide further evidence for the proposal that the canine liver secretes retinyl ester-containing particles, in amounts governed by dietary composition and vitamin A content. What selective advantage this unusual transport pathway might provide is not apparent.  相似文献   

4.
Reproductive abnormalities in New Zealand White rabbits at a large commercial rabbitry were linked to an excess of dietary retinyl acetate. Fetal resorptions, abortions, and stillbirths were common in pregnant does. Examination of aborted and stillborn fetuses disclosed hydrocephalus, microencephaly, and cleft palate. Analysis of the commercially prepared feed disclosed a total vitamin A content of 102,278 IU/kg, of which 97,618 IU was retinyl acetate (recommended total vitamin A concentrations are 6,000 to 12,000 IU/kg). Levels of vitamin A in the plasma of does with reproductive disorders were 517 to 1,667 ng/ml (normal level is 300 ng/ml), and liver levels were 2,070 to 12,854 micrograms/g (normal range is 50 to 300 micrograms/g).  相似文献   

5.
1. In canines and mustelides total vitamin A was 10-50 times higher compared to other species due to a high amount of retinyl esters (40-99% of total vitamin A) in blood plasma. The dominant vitamin A ester was in most species retinyl stearate. 2. In Ursidae, Procyonidae, Viveridae and Felidae, total vitamin A was much lower. When present, however, retinyl esters also represented 10-65% of total vitamin A in plasma. 3. Only retinol was detected in plasma of the family, Hyaenidae, and the suborder, Pinnipedia. 4. In maned wolf cubs it was found that retinol, retinyl esters and alpha-tocopherol increased with the age of the animals, reaching values comparable to adult animals at the age of 5 months.  相似文献   

6.
Elevated serum retinol-binding protein (RBP) concentration has been associated with obesity and insulin resistance, but accompanying retinol values have not been reported. Assessment of retinol is required to discriminate between apo-RBP, which may act as an adipokine, and holo-RBP, which transports vitamin A. The relations between serum RBP, retinol, retinyl esters, BMI, and measures of insulin resistance were determined in obese adults. Fasting blood (> or =8 h) was collected from obese men and women (n = 76) and blood chemistries were obtained. Retinol and retinyl esters were quantified by HPLC and RBP by ELISA. RBP and retinol were determined in age and sex-matched, nonobese individuals (n = 41) for comparison. Serum apo-RBP was two-fold higher in obese (0.90 +/- 0.62 microM) than nonobese subjects (0.44 +/- 0.56 microM) (P < 0.001). The retinol to RBP ratio (retinol:RBP) was significantly lower in obese (0.73 +/- 0.13) than nonobese subjects (0.90 +/- 0.22) (P < 0.001) and RBP was strongly associated with retinol in both groups (r = 0.71 and 0.90, respectively, P < 0.0001). In obese subjects, RBP was associated with insulin (r = 0.26, P < 0.05), homeostatic model assessment of insulin resistance (r = 0.29, P < 0.05), and quantitative insulin sensitivity check index (r = -0.27, P < 0.05). RBP was associated with BMI only when obese and nonobese subjects were combined (r = 0.25, P < 0.01). Elevated serum RBP, derived in part from apo-RBP, was more strongly associated with retinol than with BMI or measures of insulin resistance in obese adults. Investigations into the role of RBP in obesity and insulin resistance should include retinol to facilitate the measurement of apo-RBP and retinol:RBP. When evaluating the therapeutic potential of lowering serum RBP, consideration of the consequences of vitamin A metabolism is paramount.  相似文献   

7.
Retinol-binding protein (RBP) that is synthesized and secreted by the human hepatoma cell HepG2 has been measured using a sensitive radioimmunoassay in which RBP in media and hepatoma cell sonicates reacts identically to human serum RBP. RBP was synthesized and secreted when cells were grown in retinol-depleted as well as retinol-containing media. However, immunoreactive transthyretin (prealbumin) could not be detected in concentrated HepG2 medium. RBP secretion and accumulation per mg of cell protein could be modulated by the concentration of fetal calf serum in the growth medium: secreted RBP equaled 782 +/- 123 ng/mg of cell protein per 8 hr after preincubation with 10% fetal calf serum versus 555 +/- 86 ng/mg per 8 hr in the absence of serum, whereas RBP in cell sonicates decreased only slightly. When HepG2 cells were cultured for two or more passages in medium containing fetal calf serum depleted of retinol by ultraviolet irradiation, the amounts of RBP in the cells and released to the medium were both significantly increased. When vitamin A (90% as retinyl esters) in the form of chylomicron remnants was presented to cells, there was a significant, dose-dependent redistribution of RBP from cells to medium, both in cells grown in normal fetal calf serum and in retinol-depleted serum. These data indicate that the secretion of RBP by HepG2 can occur constitutively in the absence of retinol, but that secretion can be enhanced and regulated by retinol delivered by the chylomicron remnant.  相似文献   

8.
Since the yolk lipids of the king penguin (Aptenodytes patagonicus) are rich in n-3 fatty acids, which are potentially susceptible to peroxidative damage, the yolk contents and yolk-to-embryo transfer of antioxidants and lipid-soluble vitamins were investigated under conditions of natural incubation in the wild. The concentration of vitamin E in the unincubated egg was 155 microg/g wet yolk, of which 88% was alpha-tocopherol and the rest was gamma-tocopherol. Vitamin A (2.9 microg/g) was present in the yolk entirely as retinol; no retinyl esters were detected. Throughout the latter half of the incubation period, vitamins E and A were taken up from the yolk into the yolk sac membrane (YSM) and later accumulated in the liver, with vitamin A being transferred in advance of vitamin E. In the YSM, vitamin A was present almost entirely as retinyl ester, indicating that the free retinol of the yolk is rapidly esterified following uptake. Retinyl esters were also the predominant form in the liver. The retinyl esters of the liver and YSM displayed different fatty acid profiles. At hatching, the brain contained relatively little vitamin E (4.7 microg/g) compared to the much higher concentration in the liver (482.9 microg/g) at this stage. Ascorbic acid was not detected in the yolk but was present at a high concentration in the brain at day 27 (404.6 microg/g), decreasing to less than half this value by the time of hatching. This report is the first to delineate the yolk-to-embryo transfer of lipid-soluble vitamins for a free-living avian species. The yolk fatty acids of the king penguin provide an extreme example of potential oxidative susceptibility, forming a basis for comparative studies on embryonic antioxidant requirements among species of birds whose yolk lipids differ in their degree of unsaturation.  相似文献   

9.
Charge effects on phospholipid monolayers in relation to cell motility   总被引:1,自引:0,他引:1  
A new sensitive method for the assay of retinyl ester hydrolase in vitro was developed and applied to liver homogenates of 18 young pigs with depleted-to-adequate liver vitamin A reserves. Radioactive substrate was not required, because the formation of retinol could be adequately quantitated by reversed-phase high-performance liquid chromatography. Optimal hydrolase activity was observed with 500 microM retinyl palmitate, 100 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 2 mg/ml Triton X-100 at pH 8.0. The relative rates of hydrolysis of six different retinyl esters by liver homogenate were: retinyl linolenate (100%), myristate (99%), palmitate (47%), oleate (38%), linoleate (31%), and stearate (29%). The enzyme was found primarily in the membrane-containing fractions of liver (59 +/- 3%, S.E.) and kidney (76 +/- 3%), with considerably lower overall activity in kidney (57-375 nmol/h per g of tissue) than in liver (394-1040 nmol/h per g). Retinyl ester hydrolase activity in these pigs was independent of serum retinol values, which ranged from 3 to 24 micrograms/dl, and of liver vitamin A concentrations from 0 to 32 micrograms/g. Pig liver retinyl ester hydrolase differs from the rat liver enzyme in its substrate specificity, bile acid stimulation, and interanimal variability.  相似文献   

10.
A HPLC method with automated column switching and UV detection is described for the simultaneous determination of retinol and major retinyl esters (retinyl palmitate, retinyl stearate, retinyl oleate and retinyl linoleate) in human plasma. Plasma (0.2 ml) was deproteinized by adding ethanol (1.5 ml) containing the internal standard retinyl propionate. Following centrifugation the supernatant was directly injected onto the pre-column packed with LiChrospher 100 RP-18 using 1.2% ammonium acetate–acetic acid–ethanol (80:1:20, v/v) as mobile phase. The elution strength of the ethanol containing sample solution was reduced by on-line supply of 1% ammonium acetate–acetic acid–ethanol (100:2:4, v/v). The retained retinol and retinyl esters were then transferred to the analytical column (Superspher 100 RP-18, endcapped) in the backflush mode and chromatographed under isocratic conditions using acetonitrile–methanol–ethanol–2-propanol (1:1:1:1, v/v) as mobile phase. Compounds of interest were detected at 325 nm. The method was linear in the range 2.5–2000 ng/ml with a limit of quantification for retinol and retinyl esters of 2.5 ng/ml. Mean recoveries from plasma were 93.4–96.5% for retinol (range 100–1000 ng/ml) and 92.7–96.0% for retinyl palmitate (range 5–1000 ng/ml). Inter-assay precision was ≤5.1% and ≤6.3% for retinol and retinyl palmitate, respectively. The method was successfully applied to more than 2000 human plasma samples from clinical studies. Endogenous levels of retinol and retinyl esters determined in female volunteers were in good accordance with published data.  相似文献   

11.
To estimate hepatic uptake of chylomicron remnants in humans, chylomicrons and intestinal very low density lipoproteins (VLDL) were endogenously labeled with retinyl esters, harvested by plasmapheresis, and pulse-injected into the donor 44 hr after plasmapheresis. Plasma decay of retinyl palmitate was measured in eight healthy volunteers. Retinyl palmitate plasma disappearance obeyed an apparent first order function in seven studies and, in one study, a biexponential function with the second, slow exponential accounting for only 13% of the retinyl palmitate plasma decay. The mean fractional removal of rate was 0.037 +/- 0.037 min-1 (mean +/- SD) in a one-compartment model. The apparent volume of distribution, Vd, was 109 +/- 25% of the estimated plasma volume. Plasma clearance of retinyl palmitate was 130 +/- 97 ml/min calculated as Vd x Ke. Mean T 1/2 was 29 +/- 16 min. Both in vitro and in vivo the retinyl palmitate remained largely within chylomicrons and intestinal VLDL. Only 4.3% was transferred from chylomicrons to other lipoprotein classes during in vitro incubation for 5 hr. After plasma was stored for 42 hr, 5% was transferred to higher density lipoproteins. During 12 hr after a test meal containing retinyl palmitate, only 6.4 +/- 1.5% of the retinyl palmitate absorbed was found in the LDL fraction and 3.1 +/- 3.8% in the d 1.063 g/ml lipoproteins. We conclude that retinyl palmitate is a useful marker for chylomicrons and their remnants in humans and that the plasma clearance of retinyl palmitate-labeled chylomicrons is probably an estimate of chylomicron remnant plasma clearance in man.  相似文献   

12.
The aim of this study was to investigate fatty acid and carotenoid profile as well as vitamin A (retinol and retinol esters) content in gull (Larus fucus) tissues. Palmitic (16:0) and stearic (18:0) fatty acids were major saturates in all the tissues studied. Oleic acid (18:1n-9) was the major monounsaturate in the tissue phospholipids varying from 11.9% (liver) up to 18.2% (lung). Arachidonic acid (20:4n-6) was the major unsaturate in the phospholipid fraction in all the tissues. Liver contained the highest total carotenoid concentration which was 5 and 7 fold higher compared to kidney and pancreas. In the liver beta-carotene was major carotenoid. In contrast, in all other tissues beta-carotene was minor fraction with lutein being major carotenoid. Zeaxanthin, canthaxanthin, beta-cryptoxanthin and echinenone were also identified in the gull tissues. Liver and kidney were characterised by the highest vitamin A concentrations (1067.5 and 867.5 microg/g, respectively). Retinol comprised from 55.3% (pancreas) down to 8% (kidney) of the total vitamin A but was not detected in the abdominal fat. Retinyl palmitate was the major retinyl ester in the liver, kidney and heart (44.2; 38.1 and 46.0% of total retinyl esters). In muscles and abdominal fat retinyl stearate was the major retinyl ester fraction. Therefore high proportions of beta-carotene were found in gull liver and peripheral tissues were enriched by lutein and zeaxanthin compared to the liver, a very high concentration of retinyl esters in the kidney was observed and tissue-specificity in retinyl ester proportions in peripheral tissues was found.  相似文献   

13.
1. Concentrations of retinal (vitamin A(1) aldehyde) in the plasma and liver of laying hens, mature cockerels, immature pullets and pullets undergoing sexual maturation have been measured. 2. The plasma of laying hens contained about 8mug. of retinal/100ml., about ten times that found in the plasma of mature cockerels and immature pullets. In laying hens that had received large doses of retinyl palmitate 8-4 weeks previously, the mean concentration of retinal was 18.3mug./100ml. of plasma. 3. The appearance of significant amounts of retinal in the plasma of maturing pullets coincided with hypertrophy of the oviduct, increase in concentration of plasma lipid and onset of egg-laying. 4. Retinal was present in the livers of all types of fowl examined and the concentrations, which ranged from 0.2 to 5.8mug./g. wet wt., were highly correlated (r=0.79) with the concentrations of liver retinyl esters, which ranged from 92 to 1530mug./g. wet wt.  相似文献   

14.
A multiple assay capable of reliably determining vitamins D(2) and D(3) (ergocalciferol and cholecalciferol), 25(OH)D(2) (25-hydroxyvitamin D(2)) and 25(OH)D(3) (25-hydroxyvitamin D(3)), 24,25(OH)(2)D (24,25-dihydroxyvitamin D), 25,26(OH)(2)D (25,26-dihydroxyvitamin D) and 1,25(OH)(2)D (1,25-dihydroxyvitamin D) in a single 3-5ml sample of human plasma was developed. The procedure involves methanol/methylene chloride extraction of plasma lipids followed by separation of the metabolites and purification from interfering contaminants by batch elution chromatography on Sephadex LH-20 and Lipidex 5000 and by h.p.l.c. (high-pressure liquid chromatography). Vitamins D(2) and D(3) and 25(OH)D(2) and 25(OH)D(3) are quantified by h.p.l.c. by using u.v. detection, comparing their peak heights with those of standards. 24,25(OH)(2)D and 25,26(OH)(2)D are measured by competitive protein-binding assay with diluted plasma from vitamin D-deficient rats. 1,25(OH)(2)D is measured by competitive protein-binding assay with diluted cytosol from vitamin D-deficient chick intestine. Values in normal human plasma samples taken in February are: vitamin D 3.5+/-2.5ng/ml; 25(OH)D 31.6+/-9.3ng/ml; 24,25(OH)(2)D 3.5+/-1.4ng/ml; 25,26(OH)(2)D 0.7+/-0.5ng/ml; 1,25(OH)(2)D 31+/-9pg/ml (means+/-s.d.). Values in two normal human plasma samples taken in February after 1 week of high sun exposure are: vitamin D 27.1+/-7.9ng/ml; 25(OH)D 56.8+/-4.2ng/ml; 24,25(OH)(2)D 4.3+/-1.6ng/ml; 25,26(OH)(2)D 0.5+/-0.2ng/ml. Values in anephric-human plasma are: vitamin D 2.7+/-0.8ng/ml; 25(OH)D 36.4+/-16.5ng/ml; 24,25(OH)(2)D 1.9+/-1.3ng/ml; 25,26(OH)(2)D 0.6+/-0.3ng/ml; 1,25(OH)(2)D was undetectable.  相似文献   

15.
Vitamin A (retinol) deficiency is associated with impaired healing from lung injury in very-low-birth-weight (VLBW) neonates susceptible to bronchopulmonary dysplasia (BPD). Vitamin A supplementation from birth may ameliorate this adverse outcome. We hypothesized that plasma retinol-binding protein (REP) response to vitamin A administration, which provides a dynamic measure of vitamin A status, might be useful for early recognition of vitamin A deficiency in VLBW neonates at risk for BPD. We prospectively studied 20 VLBW neonates (inclusion criteria: birth weight <1300 g, gestational age <30 weeks, need for supplemental oxygen and mechanical ventilation for >24 h after birth) who were eligible to receive vitamin A supplementation. In addition to sequential assessment of vitamin A status, we measured plasma RBP just before and 3 and 6 h after an intramuscular injection of vitamin A (2000 IU/kg retinyl palmitate) on Postnatal Days 1, 7, 15, 21, 29, and 43. The percentage increase in plasma RBP (Δ-RBP) was calculated. A high plasma Δ-RBP value (>8%) is indicative of vitamin A deficiency. Based on pulmonary outcome, the infants were divided into two groups: BPD (n = 12) and No BPD (n = 8). Mean vitamin A intake ranged from 1414 to 2114 IU/kg/day and did not differ between infant groups. Mean plasma vitamin A concentration increased from baseline levels on Postnatal Day 1 to levels within the desired range of 1.05-2.10 μmol/liter (30.0-60.0 μg/dl) during supplementation period in both infant groups. Infants with BPD, in contrast to those without BPD, had worsening plasma Δ-RBP values from Postnatal Day 15, indicative of persistence of vitamin A deficiency despite supplementation and normalization of plasma vitamin A concentration. We conclude that plasma RBP response to vitamin A administration is useful for early recognition of vitamin A deficiency in VLBW neonates at risk for BPD.  相似文献   

16.
We present a specific method for the determination of disodium clodronate in human plasma and urine using a gas-chromatographic system with nitrogen phosphorus detector (NPD). The compound was extracted from plasma and urine samples by an anion-exchange resin and derivatizated with bistrimethylsilyltrifluoroacetamide (BSTFA). Sodium bromobisphosphonate was used as internal standard. The calibration curves were linear in both plasma and urine, with a regression coefficient r > 0.9975 in plasma and r > 0.9977 in urine.The limit of quantitation was 0.3 microg/ml in plasma and 0.5 microg/ml in urine. The method was validated by intra-day assays at three concentration levels. During the study we carried out inter-day assays to confirm the feasibility of the method. The precision in plasma at 0.5, 15, and 45 microg/ml was 12.4, 0.2, and 6.5% (n = 40), respectively; in urine at 0.8, 8, and 40 microg/ml it was 8.6, 6.4, and 9.3% (n = 40), respectively.The method was accurate and reproducible, and was successfully applied to determine the pharmacokinetic parameters of clodronate in healthy volunteers after intravenous infusion and intramuscular injection of 200 mg of the compound. The Cmax after intravenous infusion and intramuscular injection was 16.1 and 12.8 microg/ml, respectively. AUC(0-48 h) after infusion administration and intramuscular injection was 44.2 +/- 18.0 and 47.5 +/- 12.4 h microg/ml, respectively. The elimination half-life in both administrations was 6.31 +/- 2.7 h.  相似文献   

17.
To characterize chylomicron remnant clearance by the liver, plasma elimination of retinyl palmitate-labeled chylomicron remnants was studied in 18 healthy subjects, ages 21-42 years. Autologous plasma containing retinyl palmitate-labeled chylomicrons and their remnants was injected intravenously, and retinyl palmitate disappearance was measured in serial plasma samples in all subjects and in lipoprotein fractions in 11 subjects. The injected doses (n = 18) ranged from 0.34 to 7.11 mumol retinyl palmitate in d less than or equal to 1.006 g/ml particles with an average molar ratio of 330/1 of retinyl palmitate/apoB-48 (n = 8). The label distributed in the intravascular space and exhibited apparent first order elimination, monoexponential in 6 and biexponential in 12 subjects. The first rapid component k1 (t1/2 18.8 +/- 11.4 min, n = 18) was shown to represent retinyl palmitate in particles of d less than or equal to 1.006 g/ml, i.e., chylomicron remnants, and the second slow component k2 (t1/2 123 +/- 62 min, n = 12) small amounts of retinyl palmitate (11 +/- 7%) injected in d greater than 1.006 g/ml particles (therefore excluded from analysis). Assuming a single-compartment model, initial rates of elimination (= dose x k1) of labeled chylomicron remnants obeyed (P = 0.06) Michaelis-Menten saturation kinetics: Km was 921 +/- 305 nmol retinyl palmitate label and Vmax 124 +/- 14 nmol/min corresponding to 0.88 nM apoB-48 for Km and 0.25 x 10(-3) nmol apoB-48.min-1.g-1 liver for Vmax. Their elimination was limited neither by the injected triglyceride dose nor theoretically by the liver blood flow. After the intake of 70 g of fat (cream) containing retinyl palmitate, the plasma retinyl palmitate concentration exceeded the estimated saturation concentration for 7 h. In conclusion, physiological chylomicron remnant catabolism by the liver appears to be saturable by ordinary lipid intake in healthy humans.  相似文献   

18.
Characterization of a new endogenous vitamin A metabolite   总被引:4,自引:0,他引:4  
Here, we describe the discovery of a new major endogenous vitamin A metabolite with particularly high hepatic concentrations. This metabolite was isolated from mouse livers and was characterized as 9-cis-4-oxo-13,14-dihydro-retinoic acid (RA) based on mass spectral, ultraviolet, and nuclear magnetic resonance analyses. It was also detected in one human liver. To gain further insight into endogenous retinoid metabolism, mice were fed over a period of 14 days ad libitum with diets enriched with different amounts of retinyl palmitate [15,000, 45,000 or 150,000 international units (IU)/kg diet]. Higher retinyl palmitate amounts in the diet resulted surprisingly in a dose-dependent decrease in all-trans-RA levels in serum, kidney, and brain, whereas levels of 9-cis-4-oxo-13,14-dihydro-RA, retinol, and retinyl esters were dose-dependently elevated in serum, kidney, and liver. 13-cis-RA levels could be detected in serum, liver, and kidney, but were unaffected by the dietary vitamin A status. 9-cis-RA levels were below the detection limit of 0.2 ng/ml serum or 0.4 ng/g tissue. This study indicates that the oxidation at C4 of the cyclohexenyl ring, isomerization of the C9/C10 double bond, and reduction of the C13/C14 double bond are major endogenous metabolic pathways of vitamin A.  相似文献   

19.
Great apes are the closest living relatives of humans. Physiological similarities between great apes and humans provide clues to identify which biological features in humans are primitive or derived from great apes. Vitamin A (VA) and carotenoid metabolism have been only partially studied in great apes, and comparisons between great apes and humans are not available. We aimed to investigate VA and carotenoid intake and plasma concentrations in great apes living in captivity, and to compare them to healthy humans. Dietary intakes of humans (n = 20) and, among the great apes, chimpanzees (n = 15) and orangutans (n = 5) were calculated. Plasma retinol (ROH), retinol-binding protein (RBP), retinyl esters, and major carotenoids were analyzed. The great ape diet was higher in VA than in humans, due to high intake of provitamin A carotenoids. Plasma ROH concentrations in great apes were similar to those in humans, but retinyl esters were higher in great apes than in humans. Differences in plasma carotenoid concentrations were observed between great apes and humans. Lutein was the main carotenoid in great apes, while beta-carotene was the main carotenoid for humans. RBP concentrations did not differ between great apes and humans. The molar ratio of ROH to RBP was close to 1.0 in both great apes and humans. In conclusion, great apes show homeostatic ROH regulation, with high but physiological retinyl esters circulating in plasma. Furthermore, great apes show great selectivity in their plasmatic carotenoid concentration, which is not explained by dietary intake.  相似文献   

20.
Macrophage migration inhibitory factor (MIF), a putative cytokine involved in inflammatory and immune responses, was identified in rat peritoneal macrophages by Western blot analysis and its secretion into culture medium by enzyme-linked immunosorbent assay. To clarify the possibility of vitamin E as an immune modulator, we investigated the effect of vitamin E on MIF production in macrophages in response to calcium ionophore A23187 and lipopolysaccharide (LPS). Intraperitoneal injections of vitamin E (5 mg per rat) for 6 successive days resulted in a significant increase of alpha-tocopherol content in peritoneal macrophages. Alpha-tocopherol content of macrophages in vitamin E-treated rats was 478.3 +/- 90.7 ng/10(6) cells, whereas in control rats it was 1.5 +/- 0.5 ng/10(6) cells. For the control macrophages, total MIF content of the medium (2.5 x 10(6) cells/18 ml) without stimulation was 40.7 +/- 3.6 ng after 14 h culture, whereas stimulation with calcium ionophore A23187 (400 nM) and LPS (5.0 microg/ml) induced the elevation of MIF content to 65.9 +/- 7.5 ng and 74.3 +/- 10.4 ng, respectively (p < 0.05, n = 3). On the other hand, vitamin E-enriched macrophages without stimulation showed less MIF content (14.0 +/- 4.2 ng) than the control (p < 0.05, n = 3). Similarly, the increase of MIF of vitamin E-treated macrophages was significantly suppressed after stimulation with calcium ionophore A23187 or LPS, compared with the control macrophages (p < 0.01, n = 3). From analysis of intracellular MIF content by Western blot, we found no alteration of intracellular MIF content of vitamin E-macrophages, in contrast to the decreased content of control stimulated-macrophages, showing that vitamin E suppressed MIF secretion into the culture medium. Taken together, these results indicate that vitamin E may contribute to the regulation of inflammatory and immune responses through regulation of MIF secretion, possibly by modulating macrophage-membrane architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号